Energy in Vietnam

Andrew Blakers
Australian National University
http://re100.eng.anu.edu.au/
The market has spoken: solar & wind **decisively** won the energy race

Net new global capacity additions in 2021

Solar + wind = ¾ of net new generation capacity

Coal + oil + gas + nuclear + hydro + geothermal + bioenergy + solar thermal
The power of sustained exponential growth

The solar & wind revolution is the fastest energy change in history

Global installed solar PV capacity (Terawatts)

- Solar deployment exponential growth rate = 25%
- Solar target for zero fossil fuels in 2050 = 60 TW

- Pass nuclear in 2017
- Pass Hydro in 2023
- Pass coal in 2026

Solar & wind are unconstrained

<table>
<thead>
<tr>
<th>Issue</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost and competition</td>
<td>The market has spoken: solar & wind are cheapest</td>
</tr>
<tr>
<td>Solar & wind resources</td>
<td>Vast in most countries</td>
</tr>
<tr>
<td>Land</td>
<td>Unlimited in most countries</td>
</tr>
<tr>
<td>Balancing intermittency</td>
<td>Off-the-shelf solutions</td>
</tr>
<tr>
<td>Environmental impact</td>
<td>Low</td>
</tr>
<tr>
<td>Critical minerals</td>
<td>All materials are substitutable</td>
</tr>
</tbody>
</table>
The market has spoken: solar PV and wind decisively won the energy race.
Net new coal and renewables capacity in 2021

Renewables = 90% solar & wind

Gigawatts per year

Increasing coal

Decreasing coal
Solar & wind are unconstrained

<table>
<thead>
<tr>
<th>Issue</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost and competition</td>
<td>The market has spoken: solar & wind are cheapest</td>
</tr>
<tr>
<td>Solar & wind resources</td>
<td>Vast in most countries</td>
</tr>
<tr>
<td>Land</td>
<td>Unlimited in most countries</td>
</tr>
<tr>
<td>Balancing intermittency</td>
<td>Off-the-shelf solutions</td>
</tr>
<tr>
<td>Environmental impact</td>
<td>Low</td>
</tr>
<tr>
<td>Critical minerals</td>
<td>All materials are substitutable</td>
</tr>
</tbody>
</table>
Vietnam solar:
- good in the south
- poor in the north

Redder is better
Vietnam has world-class offshore wind

Offshore north-south HVDC cables allow sharing of solar and wind

Redder is better

https://globalwindatlas.info/
Solar & wind are unconstrained

<table>
<thead>
<tr>
<th>Issue</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost and competition</td>
<td>The market has spoken: solar & wind are cheapest</td>
</tr>
<tr>
<td>Solar & wind resources</td>
<td>Vast in most countries</td>
</tr>
<tr>
<td>Land</td>
<td>Unlimited in most countries</td>
</tr>
<tr>
<td>Balancing intermittency</td>
<td>Off-the-shelf solutions</td>
</tr>
<tr>
<td>Environmental impact</td>
<td>Low</td>
</tr>
<tr>
<td>Critical minerals</td>
<td>All materials are substitutable</td>
</tr>
</tbody>
</table>
100% renewable energy (zero fossil fuels) means 50 m^2 of solar panel per person

- 10 billion affluent people
- After electrification of everything (electricity consumption of 20-30 MWh/person/year)
- We need 1% of the land area devoted to agriculture
Rooftop solar

- Cheap energy almost everywhere
- 30% of Australian houses have solar
Agrivoltaics

• Billions of solar panels in combination with agriculture
 → small loss of food production
 → second cash crop for farmers

• Dual use of 1% of agricultural land provides enough energy for 10 billion affluent people with full electrification and zero fossil fuels
Land requirements (%)

Assumptions:
• Wealthy population (≡ USA, EU)
• Full electrification, zero fossil fuels
• All energy comes from solar
 – 20 MWh/person/year

Blue = lots of wind
Red = not much wind
Solar & wind are unconstrained

<table>
<thead>
<tr>
<th>Issue</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost and competition</td>
<td>The market has spoken: solar & wind are cheapest</td>
</tr>
<tr>
<td>Solar & wind resources</td>
<td>Vast in most countries</td>
</tr>
<tr>
<td>Land</td>
<td>Unlimited in most countries</td>
</tr>
<tr>
<td>Balancing intermittency</td>
<td>Off-the-shelf solutions</td>
</tr>
<tr>
<td>Environmental impact</td>
<td>Low</td>
</tr>
<tr>
<td>Critical minerals</td>
<td>All materials are substitutable</td>
</tr>
</tbody>
</table>
Balancing intermittency is a solved problem

- **Technical diversity**
 - PV and wind (+ existing hydro)

- **Wide geographical dispersion (0.1-1 million km²)**
 - Reduces storage by smoothing-out local weather

- **Demand management**
 - Shift loads from night to day, interruptible loads

- **Mass storage is a solved problem**
 - Pumped hydro: 95% of all storage
 - Batteries
 - Heat stores
Off-river pumped hydro

1 GW power rating (6 hours)

Water goes up and down each day for 50-100 years

The working material is H_2O, which is abundantly available and non-toxic

Vertical scale exaggerated for clarity

Presenzano, Italy
ANU’s global **off-river** pumped hydro atlas

616,000 off-river sites *(60°N to 56°S)*

23 million Gigawatt-hours *(1 million GW * 23 hours)*

All outside national parks & urban areas
50 GWh pumped storage in Asia

Asia:
260,000 sites
9 million GWh
40X more than needed
Vietnam’s enormous pumped hydro resource:
- 6,000 sites
- 200 Terawatt-hours
(50X more than needed)

Snowy 2.0 (Australia)
350 GWh, 2 GW
Cost: US$10/GWh
3-D image + information pop-up

Off-river vs on-river PHES

- Vastly more off-river sites (100-fold)
- Low technical risk
 - No rivers
 - No flood control costs
- Construction time: 2-5 years
- Small footprint
 - 100 hectare reservoirs, 25m deep, 500m head
 → 1 GW for 24 hours
Pumped hydro - environmental

- All sites are outside national parks
- Combined reservoir area is small
 - 3 m2 per person to support 100% renewables
- Water requirement is small
 - 3 litres per person per day to support 100% renewables
- Water use for 100% renewables is 10X less than coal (no cooling towers)
Cost of pumped hydro

• Cost of energy ($/GWh)
 – Two reservoirs

• Cost of power ($/GW)
 – Tunnel
 – Pump/turbine & powerhouse
 – Switchyard & transmission

• $Total cost = $energy + $power
Main cost drivers

- **Head**: bigger is better: 500-800 m
 - Triple head = half capital cost per unit of storage
- **Scale**: bigger is better: Gigawatt-scale, 15-150 GWh
- **Reservoirs**
 - Main cost is moving rock to make the dam walls
 - Desirable: small rock wall, large water storage, large head
- **Pressure tunnel**
 - Separation distance should be small with large head
- **Electromechanical & powerhouse**
 - Large head reduces cost
Pioneer Valley
Mackay, Qld

Class A
5 GW
50-120 GWh
Head: 700m
Slope: 17%
W/R ratio: 13
Example: Snowy 2.0

- Under construction
 - US$4-6 billion
 - 350 GWh (energy)
 - 2 GW (power)
- Bigger than all utility batteries in the world combined
- US$15/kWh
 - far cheaper than batteries for overnight storage
Solar & wind are unconstrained

<table>
<thead>
<tr>
<th>Issue</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost and competition</td>
<td>The market has spoken: solar & wind are cheapest</td>
</tr>
<tr>
<td>Solar & wind resources</td>
<td>Vast in most countries</td>
</tr>
<tr>
<td>Land</td>
<td>Unlimited in most countries</td>
</tr>
<tr>
<td>Balancing intermittency</td>
<td>Off-the-shelf solutions</td>
</tr>
<tr>
<td>Environmental impact</td>
<td>Low</td>
</tr>
<tr>
<td>Critical minerals</td>
<td>All materials are substitutable</td>
</tr>
</tbody>
</table>
Solar & wind avoid:

- greenhouse gas emissions
- energy exports & imports
- car exhausts
- smokestacks
- urban smog
- oil spills
- oil-related warfare
- fracking for gas
- open-cut coal mines
- coal mine fires
- ash dumps
- flooding of rivers for hydroelectricity
- nuclear waste
- nuclear accidents
- nuclear weapons proliferation
Solar & wind are unconstrained

<table>
<thead>
<tr>
<th>Issue</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost and competition</td>
<td>The market has spoken: solar & wind are cheapest</td>
</tr>
<tr>
<td>Solar & wind resources</td>
<td>Vast in most countries</td>
</tr>
<tr>
<td>Land</td>
<td>Unlimited in most countries</td>
</tr>
<tr>
<td>Balancing intermittency</td>
<td>Off-the-shelf solutions</td>
</tr>
<tr>
<td>Environmental impact</td>
<td>Low</td>
</tr>
<tr>
<td>Critical minerals</td>
<td>All materials are substitutable</td>
</tr>
</tbody>
</table>
Critical minerals are substitutable

- Many technological ways around scarce metals
 - Eg Tesla vehicle batteries moving away from nickel and cobalt
- Scarcity increases price → substitution
- Occasional supply bottlenecks occur, as with any rapidly growing industry
The importance of pathfinding

- Australia is the global solar pathfinder
 - physically isolated
 - not much hydro
 - tracking towards 80-90% renewables in 2030
 - South Australia tracking towards 100% solar/wind in 2026
 - highly stable grid.

- Letting the market sort it out via price discovery
Solar generation per person per year

Australia: global solar pathfinder

Annual solar generation (2021)
(approximation only)

Solar & wind are 99% of new Australian generation capacity
Per capita solar & wind in Asia

- Australia: Solar PV 1,000, Wind 130
- Japan: Solar PV 800, Wind 400
- China: Solar PV 600, Wind 200
- Korea Rep: Solar PV 400, Wind 100
- Chinese Taipei: Solar PV 300, Wind 100
- Viet Nam: Solar PV 200, Wind 100
- Mongolia: Solar PV 100, Wind 50
- Singapore: Solar PV 100, Wind 50
- Thailand: Solar PV 100, Wind 50
- India: Solar PV 100, Wind 50
- Malaysia: Solar PV 100, Wind 50
- Cambodia: Solar PV 100, Wind 50
- Philippines: Solar PV 100, Wind 50
- Lao PDR: Solar PV 100, Wind 50
- Korea DPR: Solar PV 100, Wind 50
- Myanmar: Solar PV 100, Wind 50
- Indonesia: Solar PV 100, Wind 50

Solar & wind are 99% of new Australian generation capacity.

Strong correlation between GDP and energy consumption.
No necessary link between GDP and choosing solar & wind.

Uruguay: Solar PV 600, Wind 100
Australian renewable electricity

15% to 82% in 12 years

Why? Because it is cheapest.

Government target for 2030: 82%

- Solar utility
- Solar rooftop
- Wind
- Hydro

Yearly breakdown from 2017 to 2022.
South Australia – global leader

- Solar & wind supply 70% of electricity
- Tracking towards 100% solar & wind in 2025
- Highly stable Gigawatt-scale grid

0% to 100% in 18 years

Why? Because it is cheapest.
South Australia

• 1st week in February 2022: solar + wind = 89%
• Peak hour: solar + wind = 136%
• Wholesale price of electricity Jan-April 2022 = lowest
Levelized energy cost for new plant

Australian consensus numbers
AU$ costs 2021
US$ costs are 70% of those shown

Solar & wind are cheapest

Facts on the ground: new Australian energy infrastructure

<table>
<thead>
<tr>
<th>Technology</th>
<th>Power (GW)</th>
<th>Energy (GWh)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumut 3</td>
<td>Pumped hydro</td>
<td>0.6/1.8</td>
<td>60</td>
</tr>
<tr>
<td>Kangaroo Valley</td>
<td>Pumped hydro</td>
<td>0.2</td>
<td><1</td>
</tr>
<tr>
<td>Wivenhoe</td>
<td>Pumped hydro</td>
<td>0.6</td>
<td>6</td>
</tr>
<tr>
<td>Snowy 2.0</td>
<td>Pumped hydro</td>
<td>2.0</td>
<td>350</td>
</tr>
<tr>
<td>Kidston-Genex</td>
<td>Pumped hydro</td>
<td>0.3</td>
<td>2</td>
</tr>
</tbody>
</table>

State Government announcements:
- Tasmania ([Battery of the Nation](https://www.batteryofthenation.com.au)), Qld ([Pioneer-Burdekin, Borumba](https://www.pioneerburdekin.com.au)), Victoria, NSW
- Utility combined Bases: 3.0
- Household combined Batteries: - 1
- EV combined Batteries: - 1
- Marinus Link Transmission: 1.2
- Energy Connect Transmission: 0.8
- HumeLink, QNI, VNI, VNI-West, Central-West Orana REZ, Snowy 2.0 connection and others Transmission: Feasibility studies and detailed planning

Bigger than all utility batteries in the world put together

No new dams on rivers
Keeping the lights on

Straightforward, off-the-shelf

- Strong regional interconnection to smooth out local weather
- Demand management in its myriad forms
- Load-following legacy coal & gas
- Hydro storage
- Pumped hydro energy storage
- Batteries: utility, home, electric vehicle
- Hot water storage tanks
- The building fabric
- Thermal stores in factories (charged during daylight) to displace gas combustion: hot rocks, molten salt molten silicon, etc

Come and see how Australia is doing it
Putting it together

• Solar & wind **decisively** won the energy race
• They produce the cheapest electricity
• They will do the heavy lifting to get rid of fossil fuels

Estimated cost of energy in Vietnam: US$75/MWh
Generation + storage + transmission
Low emissions technology

Net capacity deployment rates (GW/yr)

<table>
<thead>
<tr>
<th>Technology</th>
<th>GW/year</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar & wind</td>
<td>240</td>
<td>Doubling every 4 years</td>
</tr>
<tr>
<td>Hydroelectricity</td>
<td>25</td>
<td>Not enough rivers to dam</td>
</tr>
<tr>
<td>Bio energy</td>
<td>6</td>
<td>Awful (<1%) conversion efficiency</td>
</tr>
<tr>
<td>Nuclear</td>
<td>0</td>
<td>Expensive, slow</td>
</tr>
<tr>
<td>Carbon capture & storage</td>
<td>0</td>
<td>Too expensive</td>
</tr>
<tr>
<td>Solar thermal, geothermal</td>
<td>1</td>
<td>Very small global deployment</td>
</tr>
</tbody>
</table>

> 50,000 GW in mid-century

Extravagant growth rates needed to become significant in 2050

Solar PV = 25% efficiency (sunshine-to-useful-energy)
Getting on the quick path – use the market!

• Encourage rooftop solar
 – Very cheap electricity everywhere
 – Utilise private capital
 – Sort out supply chains and skills
• Free market for new generation capacity
 – Price discovery = solar & wind are cheap!
• Remove (or equalize) fossil fuel subsidies
National energy independence

- Make your own solar & wind electricity
- Energise your own electric transport
- Make your own electro chemicals
- Cease importing oil, gas & coal

Invasion

Pandemic

Trade war
Developing Asia

Distributed cheap solar energy for energy-poor rural people:

- Lighting
- Water pumping
- Grain grinding
- Computers
- Mobile phones and telecommunications
- Transport
- Cooking
- Light industry

Rural electrification:
Rooftop solar + microgrids are more effective than central power + grid extension

Transport
1 kW panel + battery, 25 year lifetime = 0.2 tonnes
Equivalent diesel fuel = 10 tonnes → 27 tonnes CO₂

Flexible solar: the first 100 Watts is worth more than the next 1000 Watts
Zero energy emissions in mid century is straightforward

Let free market price discovery work

- Build solar & wind generators
 - **Stop** building coal & gas power plan
- Buy electric vehicles
 - **Stop** buying oil powered vehicles
- Buy electric heaters
 - **Stop** buying gas heaters & furnaces
- Existing fossil fuel machines get old and **retire** before 2050
 → Get rid of all fossil fuels
Future of energy in Vietnam

Vietnam attributes

- Large solar resource with low seasonal variation
- Large offshore wind
- Plenty of space: rooftop, agrivoltaics
- Large, low cost, pumped hydro storage resource

A solar and wind future for an affluent Vietnam

- Strongly connect north and south with an offshore HVDC cable
- Electrification of nearly everything (transport, heating, industry)
- **500-1000 GW** of solar PV and wind (with support from hydro)
- Solar & wind build rate: **10-20 GW per year** to complete the job by mid-century
- **100-200 GW** of storage (PHES + batteries)
80% reduction in emissions by 2035

• **Generation**
 – Solar PV – rooftop, agri-PV, floating - *unlimited*
 – Wind

• **Balancing**
 – Strong transmission interconnection between regions
 – Pumped hydro storage (off-river) - *unlimited*
 – Batteries (utility, electric vehicles)
 – Demand management

• **Electrification**
 – Electric vehicles
 – Electric heat pumps
 – Electric furnaces

 • Mature, vast production runs
 • Infinite material supply, infinite resource base
 • Low environmental cost
 • Nothing to invent – the cheapest energy in history
 • And lots of room to further lower costs
Summary – the fastest energy change in history

- The market has spoken: solar & wind are cheapest
 - Let the market sort it out via price discovery
- Plenty of rooftops and land/sea for solar & wind
- Energy storage is a solved problem
- Energy independence for most countries

Key message: stop acquiring fossil fuel machines
→ Remove \(\frac{3}{4} \) of global emissions at low cost

If in doubt: come see what is happening in Australia
Thank you!

http://re100.eng.anu.edu.au