

Energy in Vietnam

Andrew Blakers Australian National University http://re100.eng.anu.edu.au/

The market has spoken: solar & wind decisively won the energy race

The power of sustained exponential growth

The solar & wind revolution is the fastest energy change in history

Solar & wind are unconstrained

Issue	Resolution
Cost and competition	The market has spoken: solar & wind are cheapest
Solar & wind resources	Vast in most countries
Land	Unlimited in most countries
Balancing intermittency	Off-the-shelf solutions
Environmental impact	Low
Critical minerals	All materials are substitutable

Global annual net new generation capacity

Net new coal and renewables capacity in 2021

Solar & wind are unconstrained

Issue	Resolution
Cost and competition	The market has spoken: solar & wind are cheapest
Solar & wind resources	Vast in most countries
Land	Unlimited in most countries
Balancing intermittency	Off-the-shelf solutions
Environmental impact	Low
Critical minerals	All materials are substitutable

Vietnam solar: - good in the south - poor in the north

Vietnam has worldclass offshore wind

Offshore north-south HVDC cables allow sharing of solar and wind

Solar & wind are unconstrained

Issue	Resolution
Cost and competition	The market has spoken: solar & wind are cheapest
Solar & wind resources	Vast in most countries
Land	Unlimited in most countries
Balancing intermittency	Off-the-shelf solutions
Environmental impact	Low
Critical minerals	All materials are substitutable

100% renewable energy (zero fossil fuels) means **50 m²** of solar panel per person

- 10 billion affluent people
- After electrification of everything (electricity consumption of 20-30 MWh/person/year)
- We need 1% of the land area devoted to agriculture

Rooftop solar

- Cheap energy almost everywhere
- 30% of Australian houses have solar

Agrivoltaics

- Billions of solar panels in combination with agriculture
 - \rightarrow small loss of food production
 - \rightarrow second cash crop for farmers
- Dual use of 1% of agricultural land provides enough energy for 10 billion affluent people with full electrification and zero fossil fuels

https://www.smart-energy.com/renewable-energy/agrivoltaic-worlds-energy-needs-can-be-powered-by-farmland-based-solar/

Land requirements (%)

Assumptions:

- Wealthy population (≡ USA, EU)
- Full electrification, zero fossil fuels
- All energy comes from solar
 - 20 MWh/person/year

Blue = lots of wind Red = not much wind

Solar & wind are unconstrained

Issue	Resolution
Cost and competition	The market has spoken: solar & wind are cheapest
Solar & wind resources	Vast in most countries
Land	Unlimited in most countries
Balancing intermittency	Off-the-shelf solutions
Environmental impact	Low
Critical minerals	All materials are substitutable

Balancing intermittency is a solved problem

- Technical diversity
 - PV and wind (+ existing hydro)
- Wide geographical dispersion (0.1-1 million km²)
 - Reduces storage by smoothing-out local weather
- Demand management
 - Shift loads from night to day, interruptible loads
- Mass storage is a solved problem
 - Pumped hydro: 95% of all storage
 - Batteries
 - Heat stores

Off-river pumped hydro

1 GW power rating (6 hours)

Water goes up and down each day for 50-100 years

Lower reservoir

The working material is H_2O , which is abundantly available and non-toxic

Vertical scale exaggerated for clarity

Presenzano, Italy

Upper reservoir

ANU's global off-river pumped hydro atlas

http://re100.eng.anu.edu.au/global/index.php

616,000 off-river sites (60°N to 56°S) 23 million Gigawatt-hours (1 million GW * 23 hours) All outside national parks & urban areas

50 GWh pumped storage in Asia

Vietnam's enormous pumped hydro resource: - 6,000 sites - 200 Terawatt-hours

(50X more than needed)

Snowy 2.0 (Australia) 350 GWh, 2 GW Cost: US\$10/GWh

3-D image + information pop-up

Off-river vs on-river PHES

- Vastly more off-river sites (100-fold)
- Low technical risk
 - No rivers
 - No flood control costs
- Construction time: 2-5 years
- Small footprint
 - 100 hectare reservoirs, 25m deep, 500m head
 - \rightarrow 1 GW for 24 hours

Pumped hydro - environmental

- All sites are outside national parks
- Combined reservoir area is small
 3 m² per person to support 100% renewables
- Water requirement is small
 - 3 litres per person per day to support 100% renewables
- Water use for 100% renewables is 10X less than coal (no cooling towers)

Cost of pumped hydro

- Cost of energy (\$/GWh)
 - Two reservoirs
- Cost of power (\$/GW)
 - Tunnel
 - Pump/turbine & powerhouse
 - Switchyard & transmission
- \$Total cost = \$energy + \$power

Main cost drivers

- Head: bigger is better: 500-800 m
 - Triple head = half capital cost per unit of storage
- Scale: bigger is better: Gigawatt-scale, 15-150 GWh
- Reservoirs
 - Main cost is moving rock to make the dam walls
 - Desirable: small rock wall, large water storage, large head
- Pressure tunnel
 - Separation distance should be small with large head
- Electromechanical & powerhouse
 - Large head reduces cost

Pioneer Valley Mackay, Qld

Class A 5 GW 50-120 GWh Head: 700m Slope: 17% W/R ratio: 13

Example: Snowy 2.0

- Under construction
 - US\$4-6 billion
 - 350 GWh (energy)
 - 2 GW (power)
- Bigger than all utility batteries in the world combined
- US\$15/kWh
 - far cheaper than batteries for overnight storage

Solar & wind are unconstrained

Issue	Resolution
Cost and competition	The market has spoken: solar & wind are cheapest
Solar & wind resources	Vast in most countries
Land	Unlimited in most countries
Balancing intermittency	Off-the-shelf solutions
Environmental impact	Low
Critical minerals	All materials are substitutable

Solar & wind avoid:

- greenhouse gas emissions
- energy exports & imports
- car exhausts
- smokestacks
- urban smog
- oil spills
- oil-related warfare
- fracking for gas
- open-cut coal mines
- coal mine fires
- ash dumps
- flooding of rivers for hydroelectricity
- nuclear waste
- nuclear accidents
- nuclear weapons proliferation

Solar & wind are unconstrained

Issue	Resolution
Cost and competition	The market has spoken: solar & wind are cheapest
Solar & wind resources	Vast in most countries
Land	Unlimited in most countries
Balancing intermittency	Off-the-shelf solutions
Environmental impact	Low
Critical minerals	All materials are substitutable

Critical minerals are substitutable

- Many technological ways around scarce metals
 - Eg Tesla vehicle batteries moving away from nickel and cobalt
- Scarcity increases price \rightarrow substitution
- Occasional supply bottlenecks occur, as with any rapidly growing industry

The importance of pathfinding

- Australia is the global solar pathfinder
 - physically isolated
 - not much hydro
 - tracking towards 80-90% renewables in 2030
 - South Australia tracking towards 100% solar/wind in 2026
 - highly stable grid.
- Letting the market sort it out via price discovery

Solar generation per person per year

Per capita solar & wind in Asia

Australian renewable electricity

South Australia – global leader

- Solar & wind supply 70% of electricity
- Tracking towards 100% solar & wind in 2025
- Highly stable Gigawatt-scale grid

Why? Because it is cheapest.

South Australia

- 1st week in February 2022: solar + wind = 89%
- Peak hour : solar + wind = 136%
- Wholesale price of electricity Jan-April 2022 = lowest

Levelized energy cost for new plant

Facts on the ground: new Australian energy infrastructure

Bigger than all utility batteries in the world put together

	Technology	Power (GW)	Energy (GWh)	Comments
Tumut 3	Pumped hydro	0.6/1.8	<u>60</u>	Existing
Kangaroo Valley	Pumped hydro	0.2	<1	Existing
Wivenhoe	Pumped hydro	0.6	6	Existing
Snowy 2.0	Pumped hydro	2.0	<mark>350</mark>	Under construction
<u>Kidston-Genex</u>	Pumped hydro	0.3	2	Under construction
State Government announcements: Tasmania	Pumped hydro	<mark>12</mark>	5-150	Announced
(Battery of the Nation), Qld (Pioneer-Burdekin, Borumba), Victoria, NSW	No n	ew dams	s on rive	e <mark>rs</mark>
Utility combined	Batteries	3.0	3	Existing
Household combined	Batteries	-	1	Existing
EV combined	Batteries	-	1	Existing
Marinus Link	Transmission	1.2	-	Approved
Energy Connect	Transmission	0.8	-	Approved
HumeLink, QNI, VNI, VNI-West, Central-West Orana REZ, Snowy 2.0 connection and others	Transmission			Feasibility studies and detailed planning

Keeping the lights on

Straightforward, off-the-shelf

- Strong regional interconnection to smooth out local weather
- Demand management in its myriad forms
- Load-following legacy coal & gas
- Hydro storage
- Pumped hydro energy storage
- Batteries: utility, home, electric vehicle
- Hot water storage tanks
- The building fabric
- Thermal stores in factories (charged during daylight) to displace gas combustion: hot rocks, molten salt molten silicon, etc

Come and see how Australia is doing it

Putting it together

- Solar & wind **decisively** won the energy race
- They produce the cheapest electricity
- They will do the heavy lifting to get rid of fossil fuels

Estimated cost of energy in Vietnam: US\$75/MWh Generation + storage + transmission https://www.sciencedirect.com/science/article/pii/S0360544221016352

Low emissions technology

Net capacity deployment rates (GW/yr)

> 50,000 GW in mid-century

Technology	GW/year			
Solar & wind	240	Doubling every 4 years		
Hydroelectricity	25	Not enough rivers to dam		
Bio energy	6	Awful (<1%) conversion efficiency		
Nuclear	0	Expensive, slow		
Carbon capture & storage	0	Too expensive		
Solar thermal, geothermal		Very small global deployment		
Extravagant growth rates needed to become significant in 2050		Solar PV = 25% efficiency (sunshine-to-useful-energy)		

Getting on the quick path – use the market!

- Encourage rooftop solar
 - Very cheap electricity everywhere
 - Utilise private capital
 - Sort out supply chains and skills
- Free market for new generation capacity
 Price discovery = solar & wind are cheap!
- Remove (or equalize) fossil fuel subsidies

National energy independence

- Make your own solar & wind electricity
- Energise your own electric transport
- Make your own electro chemicals
- Cease importing oil, gas & coal

Developing Asia

Distributed cheap solar energy for energy-poor rural people:

- Lighting
- Water pumping
- Grain grinding
- Computers
- Mobile phones and telecommunications
- Transport
- Cooking
- Light industry

<u>Rural electrification:</u> Rooftop solar + microgrids are more effective than central power + grid extension

Transport 1 kW panel + battery, 25 year lifetime = 0.2 tonnes Equivalent diesel fuel = 10 tonnes \rightarrow 27 tonnes CO₂

Flexible solar: the first 100 Watts is worth more than the next 1000 Watts

Zero energy emissions in mid century is straightforward

Let free market price discovery work

- Build solar & wind generators
 Stop building coal & gas power plan
- Buy electric vehicles
 - **Stop** buying oil powered vehicles
- Buy electric heaters
 - Stop buying gas heaters & furnaces
- Existing fossil fuel machines get old and retire before 2050
 - \rightarrow Get rid of all fossil fuels

OurWorldinData.org - Research and data to make progress against the world's largest problems. Source: Climate Watch, the World Resources Institute (2020). Licensed under CC-BY by the author Hannah Ritchie (2020).

Future of energy in Vietnam

Vietnam attributes

- Large solar resource with low seasonal variation
- Large offshore wind
- Plenty of space: rooftop, agrivoltaics
- Large, low cost, pumped hydro storage resource

A solar and wind future for an affluent Vietnam

- Strongly connect north and south with an offshore HVDC cable
- Electrification of nearly everything (transport, heating, industry)
- **500-1000 GW** of solar PV and wind (with support from hydro)
- Solar & wind build rate: 10-20 GW per year to complete the job by mid-century
- 100-200 GW of storage (PHES + batteries)

80% reduction in emissions by 2035

- Generation
 - Solar PV rooftop, agri-PV, floating unlimited
 - Wind
- Balancing
 - Strong transmission interconnection between regions
 - Pumped hydro storage (off-river) unlimited
 - Batteries (utility, electric vehicles)
 - Demand management
- Electrification
 - Electric vehicles
 - Electric heat pumps
 - Electric furnaces

- Mature, vast production runs
- Infinite material supply, infinite resource base
- Low environmental cost
- Nothing to invent the cheapest energy in history
- And lots of room to further lower costs

Summary – the fastest energy change in history

- The market has spoken: solar & wind are cheapest
 Let the market sort it out via price discovery
- Plenty of rooftops and land/sea for solar & wind
- Energy storage is a solved problem
- Energy independence for most countries

Key message: stop acquiring fossil fuel machines \rightarrow Remove $\frac{3}{4}$ of global emissions at low cost

If in doubt: come see what is happening in Australia

Thank you! http://re100.eng.anu.edu.au

200

a

