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Abstract— In this paper, we study multi-agent systems with
distributed resource allocation at individual agents. The agents
make local resource allocation decisions including, in some
cases, trading decisions — incurring income or expenditure sub-
ject to the resource price and system-level resource availability.
The agents seek to maximize their individual payoffs, which
accrue from both resource allocation income and expenditure.
We define a social shaping problem for the system and show
that the optimal price is always below a prescribed socially
resilient price threshold. By exploring optimality conditions for
each agent, we express resource allocation decisions in terms
of piece-wise linear functions with respect to the price for unit
resource. We further establish a tight range for the coefficients
of the linear-quadratic utilities, under which optimal pricing is
proven to be always socially resilient.

I. INTRODUCTION

Recent technological advancements have enabled synthe-
sized networked multi-agent systems (MAS) in both electric
energy distribution systems and in automotive transportation.
Agents in distributed and networked multi-agent systems
have their own decisions, preferences, and objectives, and
operate in concert with each other in order to achieve system-
level objectives [1]–[6]. Efficient resource allocation is a
fundamental problem for multi-agent systems, especially
when demand must equal supply for efficient and secure
system operation.

Insights from classical welfare economics theory [8], [9]
have shown that it is possible to price resources in order
to balance demand and supply in a market. In multi-agent
systems with distributed resource allocations, agents decide
on local resource consumption and exchange to optimize
individual payoffs as a combination of local utility and
income (or expenditure). Then a competitive equilibrium
under resource pricing is reached when all agents maximize
their individual payoffs subject to a network-level supply-
demand balance, which in turn maximizes the overall system-
level payoff [7].

The concept of operating a multi-agent system as a market
via optimal pricing under a competitive equilibrium has
applications in smart grid operations and climate-economy
systems. In smart grids, agents represent households, and
by optimally pricing energy we ensure the payoff for all
households are maximized subject to the balance of energy
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supply and demand [12]–[18]. In climate-economy systems,
agents represent countries, and optimal pricing of carbon
emissions ensures the interests of each country are met
subject to a carbon emission supply-demand balance [11],
[19], [20]. However, in both cases, the optimally computed
price is potentially not socially acceptable. For example, in
February 2021, the price for electricity in Texas went to an
unacceptably high rate after widespread power outages [23]1.
Moreover, the carbon emissions trading scheme under the
Kyoto Protocol was widely criticized by researchers, as the
estimated social cost of carbon was deemed as unfair among
different regions [21], [22]. Consequently, it is important to
prescribe the range of individual agent utility functions to
ensure pricing under a competitive equilibrium is compatible
with social norms, which motivates us to consider a social
shaping problem for multi-agent systems extending our prior
work in [10].

In this paper, we consider multi-agent systems where
resources are distributed to individual agents, and agents
make local demand and perhaps supply trading decisions
to maximize their individual payoffs. The payoff decisions
consider the summation of a utility arising from resource
consumption and the income (or expenditure) from resource
exchange. The agent utility functions take a linear-quadratic
form, which passes through the origin. We formulate the
social shaping problem for a competitive equilibrium at
which the optimal pricing is always below a prescribed
and socially resilient threshold. By exploring the optimality
conditions of the agent payoff functions, we show that
resource allocation decisions can be expressed in terms of
piece-wise linear functions with respect to the price for a unit
resource. Then, we link the monotonicity of these functions
with the network-level demand-supply balance condition and
establish a tight range for the coefficients in the linear-
quadratic utilities, under which optimal pricing is proven to
be always socially resilient and thus acceptable. In addition,
we also show that the optimal load decisions and price
under competitive equilibrium are equivalent with or without
trading decisions when the price takes a positive value.

This paper is organized as follows. In Section II, we
introduce our MAS and we introduce the social resilience
problem. In Section III, we present our main results on
social shaping of agent utility functions. In Section IV, we
present numerical examples to validate each of the proposed
three theorems introduced in Section III. Finally, Section V
summarizes our contributions and considers opportunities for

1Although the 2021 widespread power outage in Texas was considered
an extremely rare ‘resilience’ event, climate change is expected to increase
the frequency of weather-induced resilience events in power grids [25].
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future work.
Notation: R and R≥0 represent the set of real numbers and

non-negative real numbers, respectively. Rt>0 denotes vectors
of dimension t whose elements are positive real numbers.

II. PROBLEM DEFINITION

In this section, we define our MAS and we introduce our
social resilience problem.

A. MAS with Static Load Decisions
Consider n agents indexed in the set V = {1, 2, ..., n}.

Let ai ∈ R≥0 be the local resource generated by agent i,
and xi ∈ R≥0 be the resource consumed by this agent. Let
fi(xi) : R≥0 7→ R denote the utility of each agent as a
result of consuming xi amount of resource. The difference
between xi and ai will be exchanged over the MAS through
an underlying network. The network capacity C > 0 is
defined as C :=

∑n
i=1 ai.

The aim of the MAS is to allocate the total network
capacity C over the xi under a price λ for unit resource
exchange, where each agent tries to maximize its individual
payoff function as the summation of the utilities and the
income (or expenditure). Such an MAS is termed an MAS
with Static Load Decisions (MAS-SLD).

Let a = (a1, ..., an)
> be the vector of all resources, and

let x = (x1, ..., xn)
> be the vector of consumed resources.

We recall the following definition [16].
Definition 1: For the MAS-SLD, a competitive equilib-

rium (λ∗, x∗) is achieved if the following two conditions
hold:
(i) x∗ maximizes the individual payoff function of each

agent; i.e., x∗i solves the following maximization prob-
lem

max
xi

fi(xi) + λ∗(ai − xi)

s.t. xi ∈ R≥0,
(1)

(ii) x∗ balances the total energy consumption and supply
across the network; that is,

n∑
i=1

x∗i = C. (2)

B. MAS with Static Load and Trading Decisions
In order to extend the MAS-SLD, let ei ∈ R represent

the amount of resource traded by agent i. It is clear that
ei can never be greater than ai − xi. Now, each agent has
two associated decision variables xi and ei. Such an MAS
is termed an MAS with Static Load and Trading Decisions
(MAS-SLTD). Let e = (e1, ..., en)

> be the vector of traded
resource across the network.

Definition 2: A competitive equilibrium (λ∗,x∗, e∗) for
an MAS-SLTD is achieved if the following two conditions
hold:
(i) (x∗, e∗) maximizes the individual payoff function of

each agent, meaning that (x∗i , e
∗
i ) solves the following

maximization problem

max
xi,ei

fi(xi) + λ∗ei

s.t. xi + ei ≤ ai, xi ∈ R≥0, ei ∈ R,
(3)

(ii) e∗ balances the total resource consumption and supply
across the network, i.e.,

n∑
i=1

e∗i = 0. (4)

C. Social Optimality of Competitive Equilibrium

From classical welfare economics theory, a competitive
equilibrium guarantees Pareto optimality in the sense that no
agent can update her decision without reducing the payoff of
other agents. This is referred to as market efficiency [7]–[9].
One may also introduce the following system-level social
welfare optimization problem for an MAS-SLD as

max
x

n∑
i=1

fi(xi)

s.t.

n∑
i=1

xi = C, xi ∈ R≥0, i ∈ V.
(5)

It is known that under the concavity of the fi for an
MAS-SLD, the optimal resource allocation decision in a
competitive equilibrium is an optimal solution to this social
welfare optimization problem, and vice versa [10], [16]. In
addition, the optimal price λ∗ in (1) is the Lagrange multi-
plier associated with the equality constraint

∑n
i=1 xi = C in

(5). The same connection between competitive equilibrium
and social welfare optimization can be drawn for an MAS-
SLTD.

D. Social Shaping for Linear Quadratic MAS

Despite the aforementioned efficiency and social optimal-
ity of the competitive equilibrium for our MAS, one critical
challenge arises in its practical usefulness. Specifically, if
a subset of agents potentially set their utility functions in
aggressive ways, they may dominate the optimal system
price λ∗ so that the price becomes unaffordable for other
agents. Therefore, it is important to set a range for the agent
utility functions so that the resulting λ∗ is always below a
socially acceptable threshold λ† > 0 [10]. Here, we assume
λ† is designed by MAS-based operator in consultation with
respective agents. To this end, we introduce the following
assumption, which is assumed to hold throughout the rest of
the paper.

Assumption 1: For all i ∈ V ,

fi(xi) := −
1

2
bix

2
i + kixi = −

1

2
bix

2
i +mibixi. : R≥0 7→ R,

(6)
where (bi, ki) ∈ R>0 × R>0, and mi = ki/bi.

The social shaping problem for these linear quadratic
utility functions is presented in the following as an extension
of the study in [10].

MAS Social Shaping Problem. For both an MAS-SLD and
an MAS-SLTD, find the range of values for (mmax, bmax)
under which all utility functions with parameters mi ≤ mmax

and bi ≤ bmax will lead to a socially resilient optimal price
λ∗ ≤ λ†.
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III. MAIN RESULTS

In this section, we present a new set of utility functions
for an MAS such that the optimal price is socially resilient.

A. MAS with Static Load Decisions

We first consider an MAS-SLD quadratic utility function
of the form in (6).

Lemma 1: Considering the utility function fi(xi) =
− 1

2bix
2
i +mibixi in (6) and the optimization problem (1),

the optimal solution x∗i is such that

x∗i = max

{
mi −

λ∗

bi
, 0

}
. (7)

Proof: Rearranging the optimization problem (1), x∗i is
the solution to the following maximization problem:

max
xi

− 1

2
bix

2
i + (mibi − λ∗)xi + λ∗ai

s.t. xi ∈ R≥0.
(8)

Let x̂i be the value xi which maximizes the objective func-
tion in the absence of any constraints. Then x̂i is obtained
when the derivative of the objective function equals zero.
That is,

− bix̂i + (mibi − λ∗) = 0, (9)

which implies x̂i = mi − λ∗

bi
. Considering the inequality

constraint xi ≥ 0 in the maximization problem (8), when
λ∗ ≤ mibi, the solution is achieved at x∗i = x̂i = mi − λ∗

bi
which is non-negative and satisfies the inequality constraint.
Conversely, when λ∗ > mibi, x̂i is negative which does not
satisfy the inequality constraint, so x∗i 6= x̂i. In this case,
the objective function is strictly decreasing with respect to
xi. Consequently, in order for the objective function to be
maximized, xi must be minimized, i.e., x∗i = 0. Therefore,
when λ∗ > mibi then x∗i = 0, otherwise, x∗i = mi − λ∗

bi
.

Lemma 2: If mi ≤ C
n for all i ∈ V , then λ∗ ≤ 0.

Conversely, if mi >
C
n for all i ∈ V , then λ∗ > 0.

Proof: (i) Consider the case mi ≤ C
n . By contradiction,

suppose λ∗ > 0. From equation (7) we yield x∗i < mi. Since
mi ≤ C

n , we obtain x∗i <
C
n . Consequently,

n∑
i=1

x∗i < C, (10)

which contradicts the balancing equality
∑n
i=1 x

∗
i = C in

(2). Therefore, it follows that λ∗ ≤ 0.
(ii) Consider the case mi >

C
n . By contradiction, suppose

λ∗ ≤ 0. From equation (7) we obtain x∗i ≥ mi. Since mi >
C
n , we yield x∗i >

C
n . Consequently,

n∑
i=1

x∗i > C, (11)

which contradicts the balancing equality
∑n
i=1 x

∗
i = C in

(2). Therefore, it follows that λ∗ > 0.

Now consider two vectors k = (k1, ..., kn) and k′ =
(k′1, ..., k

′
n), and let k � k′ denote ki ≤ k′i for all i ∈ V . Let

m = (m1, ...,mn) and b = (b1, ..., bn). Suppose λ∗ is the
optimal price associated with the pair of vectors (m, b), and
let λ∗

′
be the optimal price associated with (m′, b′).

Lemma 3: If λ∗ > 0, then m � m′ and b � b′ yield
λ∗ ≤ λ∗′ .

Proof: Suppose λ∗ > 0. Substituting (7) into the
balancing equality

∑n
i=1 x

∗
i = C in (2) yields

n∑
i=1

max

{
mi −

λ∗

bi
, 0

}
= C. (12)

As mi and bi increase, λ∗ must also increase so as to
compensate for the change — ensuring the balancing equality
(12) holds. Otherwise, the left-hand side of equality (12)
would increase, while the right-hand side remains constant,
and so the equality would not hold.

Theorem 1: Consider the MAS-SLD. Suppose
(mmax, bmax) ∈ R2

>0 is selected from the following
set

S∗ =

{
mmax ≤

C

n
, bmax ∈ R>0

}⋃
{
mmax >

C

n
, bmax ≤

nλ†

nmmax − C

}
,

(13)

then the resulting λ∗ is socially resilient for all utility
functions satisfying mi ≤ mmax and bi ≤ bmax.

Proof: We investigate two cases.
Case (i) mmax ≤ C

n . In this case, mi ≤ mmax implies
mi ≤ C

n for i ∈ V . Therefore, Lemma 2 implies λ∗ ≤ 0.
Since λ† > 0, one obtains λ∗ < λ†. Consequently, λ∗ is
socially resilient.

Case (ii) mmax >
C
n and bmax ≤ nλ†

nmmax−C . If λ∗ ≤ 0,
then it is socially resilient. Conversely, if λ∗ > 0, Lemma 3
yields λ∗ is monotonically increasing with respect to mi and
bi, so the highest possible price λ∗max is achieved when mi =
mmax and bi = bmax for all agents i ∈ V . Consequently,
when all agents select mi = mmax and bi = bmax, the
balancing equality (12) results in

n

(
mmax −

λ∗max

bmax

)
= C, (14)

and therefore,

λ∗max = bmax

(
nmmax − C

n

)
. (15)

From equation (15), along with the assumption bmax ≤
nλ†

nmmax−C in (13), yields λ∗max ≤ λ†. Since λ∗ ≤ λ∗max,
one obtains λ∗ ≤ λ†.

Considering (i) and (ii), it follows that as long as
(mmax, bmax) is constrained in the set S∗ in (13), λ∗ will
be socially resilient.

B. MAS with Static Load and Trading Decisions

This part studies the MAS-SLTD.
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Lemma 4: Consider the utility function fi(xi) =
− 1

2bix
2
i +mibixi in (6) and the optimization problem (3).

The optimal solution x∗i is achieved by

x∗i = max

{
mi −

λ∗

bi
, 0

}
. (16)

Proof: Consider the inequality constraint xi+ei ≤ ai in
the optimization problem (3). This inequality can be written
as

xi + ei + si = ai, (17)

where si ≥ 0 is the slack variable. Substituting ei = ai −
xi−si into (3) yields an equivalent form for the optimization
problem as

max
xi,si

− 1

2
bix

2
i + (mibi − λ∗)xi + λ∗ai − λ∗si

s.t. xi, si ∈ R≥0.
(18)

Furthermore, it is proved that for systems with load and
trading decisions λ∗ ≥ 0 [10]. Therefore, we can consider
three cases.

Case (i) λ∗ = 0. In this case, (18) yields x∗i = mi.
Case (ii) 0 < λ∗ ≤ mibi. In this case, the objective

function in (18) is strictly decreasing with respect to si.
Consequently, in order for the objective function to be
maximized, si must be minimized, i.e., s∗i = 0. This implies
that the first inequality constraint in (3) is active. As a result,
substituting s∗i = 0 into (18) yields

max
xi

− 1

2
bix

2
i + (mibi − λ∗)xi + λ∗ai

s.t. xi ∈ R≥0.
(19)

This optimization problem is the same as the one for sys-
tems with only load decisions, described in (8). Therefore,
considering λ∗ ≤ mibi, Lemma 1 implies x∗i = mi − λ∗

bi
.

Case (iii) λ∗ > mibi. In this case, the objective function
in (18) is strictly decreasing with respect to both xi and
si. Consequently, in order for the objective function to be
maximized, xi and si must be minimized, i.e., x∗i = s∗i = 0.

Finally, considering (i), (ii), and (iii), it follows that (16)
holds.

Lemma 5: For all i ∈ V , if mi ≤ C
n then λ∗ = 0.

Conversely, if mi >
C
n then λ∗ > 0.

Proof: We use a similar proof to the proof of Lemma
3.

Theorem 2: Consider the MAS-SLTD. Suppose
(mmax, bmax) ∈ R2

>0 is selected from the set

S∗ =

{
mmax ≤

C

n
, bmax ∈ R>0

}⋃
{
mmax >

C

n
, bmax ≤

nλ†

nmmax − C

}
,

(20)

then the resulting λ∗ is always socially resilient.
Proof: We consider two cases.

Case (i) mmax ≤ C
n . In this case, mi ≤ mmax implies

mi ≤ C
n for i ∈ V . Therefore, Lemma 5 implies λ∗ = 0.

Since λ† > 0, we obtain λ∗ < λ†. Consequently, λ∗ is
socially resilient.

Case (ii) mmax > C
n and bmax ≤ nλ†

nm−C . In this case
mi ≤ mmax, and either mi ≤ C

n or mi >
C
n . It follows that

either λ∗ = 0 or λ∗ > 0. First, if λ∗ = 0, then it is socially
resilient. Conversely, if λ∗ > 0, the objective function in
(18) is strictly decreasing with respect to si, hence s∗i =
0. Therefore, (17) yields x∗i + e∗i = ai, i.e., the inequality
constraint is active. Considering

∑n
i=1 e

∗
i = 0, it follows that

n∑
i=1

x∗i = C, (21)

where C =
∑n
i=1 ai. Substituting equation (16) into (21)

yields
n∑
i=1

max

{
mi −

λ∗

bi
, 0

}
= C. (22)

The rest of the proof is the same as the proof of Theorem
1 part (ii). Considering equality (22) and λ∗ > 0, Lemma
3 implies λ∗ is monotonically increasing with respect to
mi and bi, so the highest possible optimal price λ∗max is
achieved when mi = mmax and bi = bmax for all agents.
Consequently, when all agents select mi = mmax and
bi = bmax, the equality (22) results in

n

(
mmax −

λ∗max

bmax

)
= C, (23)

and therefore,

λ∗max = bmax

(
nmmax − C

n

)
. (24)

From equation (24), along with the assumption bmax ≤
nλ†

nmmax−C in (20), yields λ∗max ≤ λ†. Since λ∗ ≤ λ∗max,
we obtain λ∗ ≤ λ†.

Considering (i) and (ii), it follows that as long as
(mmax, bmax) is constrained in the set S∗ in (20), λ∗ will
be socially resilient.

C. Decision Equivalence

Theorem 3: Suppose λ∗ > 0. Then under a competitive
equilibrium, MAS-SLD and MAS-SLTD are equivalent in
that each agent specifies the same load allocation and the
optimal price is also the same.

Proof: Consider the optimization problem of MAS-
SLTD in (3). The inequality constraint xi + ei ≤ ai can be
written as xi + ei + si = ai, where si ≥ 0 is the slack
variable. Additionally, substituting ei = ai−xi− si into (3)
yields an equivalent form for the optimization problem as

max
xi,si

fi(xi) + λ∗(ai − xi − si)

xi, si ∈ R≥0.
(25)

Let λ∗ > 0. Then, the objective function in (25) is strictly
decreasing with respect to si. Consequently, in order for (25)
to be maximized, si must be minimized, i.e., s∗i = 0. This
implies that the inequality constraint xi + ei ≤ ai is active
and x∗i + e∗i = ai. Taking the summation in this equality
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implies
∑n
i=1 x

∗
i +

∑n
i=1 e

∗
i = C, where C =

∑n
i=1 ai.

Substitution of the balancing equality
∑n
i=1 e

∗
i = 0 in (4),

yields
n∑
i=1

x∗i = C. (26)

Furthermore, substituting si = 0 into (25) yields

max
xi

fi(xi) + λ∗(ai − xi)

xi ∈ R≥0.
(27)

Comparing (27) and (26) with (1) and (2), implies that
the problem of MAS-SLTD is equivalent to the problem of
MAS-SLD. Therefore, x∗SLTD = x∗SLD. A similar analysis
can be done to show λ∗SLTD = λ∗SLD.

IV. NUMERICAL RESULTS

Consider a MAS with 4 agents. Let a = (10, 21, 24, 25),
which yields C = 80. The highest socially acceptable
resource price is λ† = 20, and thus we seek a price λ∗ ≤ 20.
Under Assumption 1, each agent has the utility function
fi(xi) = − 1

2bix
2
i +mibixi.

In the numerical results that follow we consider MAS-
SLD and MAS-SLTD. To calculate λ∗ for MAS-SLD, the
social welfare problem in (5) must be solved, where λ∗ is
the Lagrange multiplier associated with the equality con-
straint in (5). Similarly, to obtain λ∗ for MAS-SLTD, the
associated social welfare problem must be solved, where λ∗

corresponds to the Lagrange multiplier associated with the
balancing equality constraint. In the following, we examine
four scenarios.

Scenario I: For simplification, suppose all agents have the
same mi and the same bi which take values in the intervals
[1, 40] and [0.1, 1], respectively. Contour plots of λ∗ as a
function of mi and bi are depicted in Fig. 1 for both MAS-
SLD and MAS-SLTD. In this case, we have mmax = 40
and bmax = 1 which lie in the proposed set S∗ defined in
Theorems 1 and 2. As Fig. 1 illustrates, for different values
of mi and bi, the optimal price is socially resilient, i.e., λ∗ ≤
20. This is because (mmax, bmax) is inside the prescribed set,
and therefore, Theorems 1 and 2 are valid. In addition, when
λ∗ > 0, i.e., mi > 20, the optimal price is monotonically
increasing with respect to both mi and bi, which is consistent
with Lemma 3.

Scenario II: In the second scenario, consider mmax = 40
and bmax = 2, which exceeds the proposed set S∗. Suppose
all agents have the same mi which takes values in the interval
[1, 40], while bi is set according to b = (1.2, 1.3, 1.5, 1.8).
λ∗ is calculated for different values of mi ∈ [1, 40], and
the results are depicted in Fig. 2 for both MAS-SLD and
MAS-SLTD. Denote λ∗SLD and λ∗SLTD as the optimal prices
of MAS-SLD and MAS-SLTD, respectively. Fig. 2 illustrates
that for mi > 35, the optimal price is greater than λ†, and
therefore, it is not socially resilient. This happens because
bmax does not follow the conditions of Theorems 1 and 2,
and it is not in the set S∗. Additionally, it is observed that
when mi ≤ C

n then λ∗ ≤ 0 for MAS-SLD and λ∗ = 0
for MAS-SLTD. However, when mi >

C
n then λ∗ > 0 for

(a) Contour plots of λ∗ for MAS-SLD

(b) Contour plots of λ∗ for MAS-SLTD

Fig. 1: Contour plots of λ∗ as a function of mi and bi for
MAS-SLD and MAS-SLTD in Scenario I.

Fig. 2: Diagrams of the optimal price λ∗ as a function of mi

in Scenario II.

both MAS-SLD and MAS-SLTD, which is consistent with
Lemmas 2 and 5 (note that C

n = 20).
Scenario III: In the third scenario, suppose mmax = 40

and bmax = 1 which lie in the proposed set. We study two
cases. In case (1), let mi = mmax and in case (2) let mi

be set according to m = (10, 14, 17, 20). Denote λ(1)∗SLD and
λ
(2)∗
SLD as the optimal prices of MAS-SLD associated with

cases (1) and (2), respectively. Similarly, let λ(1)∗SLTD and
λ
(2)∗
SLTD be the optimal prices of MAS-SLTD related to cases

(1) and (2), respectively. Suppose all agents have the same
bi. The diagrams of λ∗ as a function of bi are depicted in
Fig. 3 when bi takes values in the interval [0.1, 2]. As Fig. 3
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Fig. 3: Diagrams of the optimal price λ∗ as a function of bi
in Scenario III.

Fig. 4: Diagrams of λ∗ and x∗1 as a function of mi in Scenario
IV.

illustrates, in case (1), λ∗ is socially resilient only if bi ≤ 1
(note that bmax = 1). On the other hand, in case (2), where
mi ≤ C

n , λ∗ is socially resilient for different values of bi, no
matter if bi ≤ 1 or bi > 1. This validates Theorems 1 and 2.

Scenario IV: Consider the system parameters as b =
(0.5, 0.7, 0.9, 1) and mi ∈ [1, 40], where all agents have the
same mi. To assess Theorem 3, diagrams of λ∗ and x∗1 as
a function of mi are depicted in Fig. 4 for both MAS-SLD
and MAS-SLTD. As illustrated in Fig. 4, for mi > 20, where
λ∗ > 0, we have x∗1SLTD = x∗1SLD and λ∗SLTD = λ∗SLD.

V. CONCLUSION

In this paper, we presented the problem of social shaping
for self-sustained multi-agent systems with quadratic utility
functions and distributed resource allocation, in which each
agent aims to maximize its payoff under quadratic utility
functions. It was shown that the resulting optimal solution
is piece-wise linear with respect to the optimal price. Based
on this observation, we presented a set of quadratic utility
functions for these agents which guarantees that the optimal
price across the network will always be socially acceptable.
Subsequently, a few numerical examples are provided to
examine the effectiveness of the proposed set. In future
work, extensions to more general classes of utility functions
is possible. Additionally, extension to consider the payoff
function of each agent to be dependent on the resource
allocation of other agents, resulting in more complicated ob-

jective functions, may also be possible. Other extensions may
include MAS dynamics, and the impact of price volatility.
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