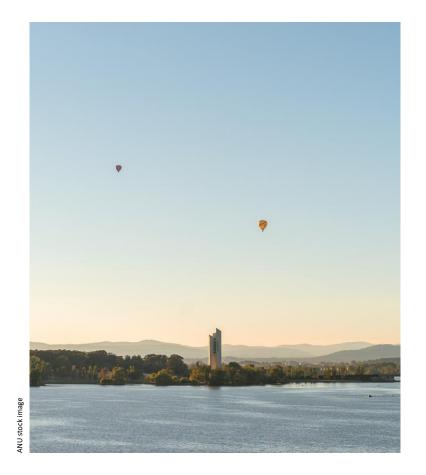
ENERGY EFFICIENCY

Dr Lee White

Australian National University

lee.white@anu.ed.au

Executive Training



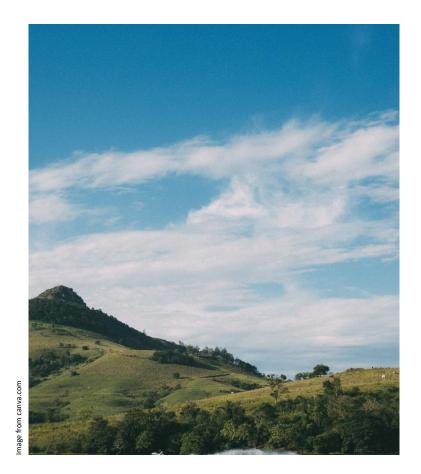
Australian National University

Intended learning outcomes

Learning outcome 1: Understand the key technologies that will enable the transition to a zero-emissions energy system

Learning outcome 3: Consider the market, regulatory and policy frameworks that underpin the operation and facilitate the transition of the energy sector

Energy efficiency


What is it?

Achieving the same thing using less energy

e.g.,

3

- Improved insulation and glazing let a building stay warm (or cool) with less energy input
- A more efficiently designed fridge uses less energy to keep food cool
- Can also cover behavioural changes, such as doing laundry with cold water, or setting back thermostats

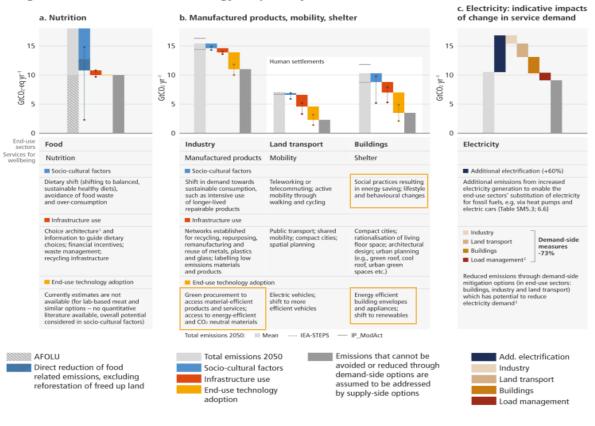
Answer the quiz on Zoom:

What kinds of strategies does your country currently have for energy efficiency? (Select all that apply)

- Labels to rate energy efficiency (on products or buildings)
- Financial support to homes or businesses wanting to make energy efficiency upgrades
- Rules stating minimum required energy efficiency (such as for new buildings, certain products)

Image from canva.com

Role of Energy Efficiency


One of many demand-side strategies

IPCC AR6 WGIII:

6

By 2050, comprehensive demand-side strategies across all sectors could reduce CO_2 and non- CO_2 GHG emissions globally by 40–70% (compared to the 2050 emissions projection of scenarios consistent with policies announced by national governments until 2020)

Demand-side mitigation can be achieved through changes in socio-cultural factors, infrastructure design and use, and end-use technology adoption by 2050.

Cost of Energy Efficiency

IPCC AR6 WGIII

- Avoided demand and efficient appliances can save money relative to references scenarios
- In contrast, new construction of energy efficient buildings is expensive
- Energy efficiency measures in industry can also be low-cost

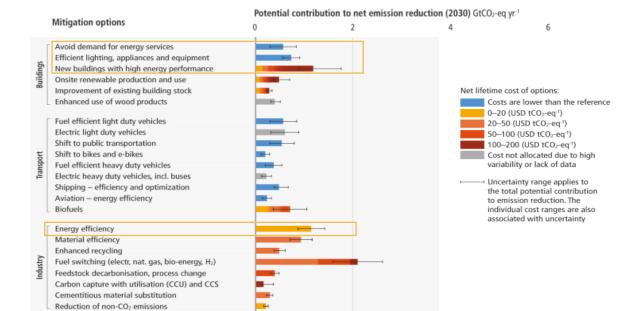


Figure SPM.7: Overview of mitigation options and their estimated ranges of costs and potentials in 2030.

Energy efficiency

Energy is generally a means to an end, not an end itself

We use energy to access the services it provides, such as heating, lighting, cooling, and cleaning

Access to sufficient energy services is generally considered essential to being able to lead a good life

Energy efficiency can have benefits not just for climate, but also for increasing affordable access to energy services across the population (e.g. ability to keep homes a comfortable temperature)

8

Synergies of Energy Efficiency

IPCC AR6 WGIII

Several mitigation measures can also support sustainable development goals

Sectoral and system mitigation options				Relation with Sustainable Development Goals											Chapter course			
	Sectoral and system mitigation options				4	5	6	7	8	9	10	11	12	14	15	16	17	Chapter source
- [Demand-side management	+	+	+			+	+	•	•	+	+	+					Section 9.8, Table 9.5
	Highly energy efficient building envelope	•		•	+		+	+	•	•	•	+	+			+	-	Section 9.8, Table 9.5
5	Efficient heating, ventilation and air conditioning (HVAC)	•	+	+			+	+	٠	•	٠	+	+					Section 9.8, Table 9.5
ing	Efficient appliances	•	+	+	+	+	+	+	٠	—	•	+	•		+			Section 9.8, Table 9.5
Buildings	Building design and performance	+	+	+			+	+	•	-	÷	+	+		+	+		Section 9.8, Table 9.5
-	On-site and nearby production and use of renewables	•	•	+	+	+	٠	٠	٠	٠	•	+	+		+	+	+	Section 9.8, Table 9.5
	Change in construction methods and circular economy			+			٠	+	٠	+		+	+				+	Sections 9.4, 9.5
	Change in construction materials			•			٠	+	٠	+		+	+		-		+	Section 9.4
	Fuel efficiency – light duty vehicle	+		+				+	+			+			+			Sections 10.3, 10.4, 10.8
	Electric light duty vehicles			٠				٠		+	٠	+	٠					Sections 10.3, 10.4, 10.8
	Shift to public transport	+		+	+	+		+	+	٠	+	+	+					Sections 10.2, 10.8, Table 10.3
t	Shift to bikes, ebikes and non motorized transport	+		•	+	+		+	+	+	+	+	+		+			Sections 10.2, 10.8, Table 10.3
Transport	Fuel efficiency – heavy duty vehicle	+		+				+	+						+			Sections 10.3, 10.4, 10.8
Tra	Fuel shift (including electricity) – heavy duty vehicle			+				+	Ð	+			•					Sections 10.3, 10.4, 10.8
	Shipping efficiency, logistics optimization, new fuels							+	Ð	+								Sections 10.6, 10.8
	Aviation – energy efficiency, new fuels							+	D	+								Sections 10.5, 10.8
	Biofuels		٠	٠				+		+		+		٠	٠			Sections 10.3, 10.4, 10.5, 10.6, 10.8
	Energy efficiency			+				+	+	+								Section 11.5.3
<u>⊳</u>	Material efficiency and demand reduction						+			+			+				_	Section 11.5.3
Industry	Circular material flows			+			+	+	+			+	+	+			+	Section 11.5.3
Inc	Electrification	+	•	+		+	_	+	+			_	_				_	Sections 11.5.3, 6.7.7
	CCS and carbon capture and utilisation (CCU)	_	_	·		_	-	·	÷	+		+			=			Section 11.5.3

Figure SPM.8 Synergies and trade-offs between sectoral and system mitigation options and the SDGs

Related Sustainable Development Goals:	
1 No poverty	10 Reduced inequalities
2 Zero hunger	11 Sustainable cities and communities
3 Good health and wellbeing	12 Responsible consumption and production
4 Quality education	13 Climate action
5 Gender equality	14 Life below water
6 Clean water and sanitation	15 Life on land
7 Affordable and clean energy	16 Peace, justice and strong institutions
8 Decent work and economic growth	17 Partnership for the goals
9 Industry, innovation and infrastructure	

9

What areas are the current focus in your country?

How do you think energy efficiency works alongside sustainable development goals in these areas?

TYPES OF POLICIES

Table 1 Policy types and policy functions

Policy type	Policy function	Theory of change (for the end user)	Behaviour type	Policy class	
energy or CO ₂ taxes	To increase the price of energy or carbon-based energy in line with the polluter-pays principle	Response to economic incentives (dependent on elasticity of demand)	Purchase and habitual	Taxation	
Energy efficiency obligations	To reduce the price of energy-efficient options (UK model)	Response to economic incentives	Purchase	Purchase subsidy	
Grants	To reduce the price of energy-efficient options	Response to economic incentives	Purchase	Purchase subsidy	
Tax rebates	To reduce the price of energy-efficient options to taxpayers	Response to economic incentives	Purchase	Purchase subsidy	
Loans	To give people/organizations access to capital so they can buy energy- efficient options	Lack of access to capital/ high cost of capital as a barrier to investment	Purchase	Access to capital	
On-bill finance	To give people/organizations access to capital so they can buy energy- efficient options	Lack of access to capital/ high cost of capital as a barrier to investment	Purchase	Access to capital	
Regulations	To set legally enforceable minimum standards of energy efficiency for products, vehicles and buildings	Inefficient options no longer available	Purchase	Minimum standards	
Voluntary agreements	To set minimum or fleet-average standards of energy efficiency for products, vehicles and buildings	Inefficient options no longer available	Purchase	Minimum standards	
Standards and norms	To enable other efficiency policies to work	n.a.	Purchase	Underpinning measurement standards	
Energy labelling schemes	To enable individuals and organizations to take account of energy in their purchase decision-making	Relevant information/ advice provided at the right time can influence choices	Purchase	Information and feedback	
Information, advice, billing feedback, smart metering	To enable individuals and organizations to take account of energy in their purchase decision-making and/or habitual behaviours/practices	Relevant information/ advice provided at the right time can influence choices	Purchase and/or habitual (depends on instrument)	Information and feedback	

Types of energy efficiency policies

Policies to target energy efficiency can fall into regulatory, financial, or informational categories

e.g.

- Legally enforceable minimum standards for energy efficiency of buildings or products
- Grants to reduce the price of energy-efficient options
- Energy labelling schemes to enable people to take account of energy in their purchase decision-making

(Table from Rosenow et al., 2016)

Policy overview

These strategies generally work, though imperfectly

Regulated minimum standards do tend to improve building stock over time, though not always to the anticipated level

Finance measures can sometimes increase purchase of energy efficient goods, though other times they are unsuccessful

Information in the form of labelling schemes for energy efficiency does tend to be used by consumers; consumers generally value energy efficiency

Building codes

Improved building codes can reduce energy consumption (e.g., Hjortling et al. 2017),

Buildings built after construction codes were improved have lower energy use (Hjortling et al. 2017)

In the EU, residential building code requirements have been strengthening over time (Economidou et al, 2020)

Energy use intensity has generally declined over time; this is particularly visible when correcting for increases income and other factors that change over time (Economidou et al., 2020)

Table 7

Average energy performance [kWh/m²] according to building type and construction period.

Source: Hjortling et al., 2017

Building type	Construction period (count	tion period (count)						
	1979	1980-2009	2010					
Multi-dwelling buildings (320 and 321 A and B)	151 (91,679)	129 (35,024)	85 (1022)					
Farms (100)	142 (8969)	108 (883)	74(77)					
Mainly offices (325)	159 (8761)	137 (4175)	87 (122)					
Mainly hotels and restaurants (322)	171 (1256)	188 (647)	122 (12)					
Healthcare facilities (823)	181 (4292)	156 (3253)	102 (96)					
Schools (825)	178 (10,247)	155 (3523)	97 (100)					
Sports facilities (824)	191 (952)	148 (603)	104 (26)					

Source: compiled by the author using data from the GRIPEN database, September 2015.

Fig. 5. Residential energy consumption climatic corrected per capita, per average floor area of dwellings and per adjusted disposable income of households in EU-15 minus PT & BE (1995–2017). Portugal (PT) and Belgium (BE) were excluded from the analysis due to unavailability of floor area data.

Source: Economidou et al., 2020

Finance

Finance instruments are not always effective

Sometimes they are regressive in nature; people with less ability to pay bear more of the policy cost (and receive less of the benefit)

Sometimes perverse price effects occur

Subsidies and rebates can also be expensive to implement

(Sola et al., 2021)

Table 2 Effectiveness of EE policies: overview of studies and main results of command and control and price instruments (in order of appearance)

					-		
EE policy	Reference	Year of the study	Country	Sector/product category	Methodology	Evidence on the effectiveness of the policy	Comments
Command and control	l						
Codes	Aroonruengsawat et al. (2012)	2005-2007	USA	Appliances	Difference in Difference	+	Decrease in energy consumption
	Jacobsen and Kotchen (2011)	2000–2009	USA	Appliances	First difference regression with EPA's Energy Star data base	+	Decrease in electricity and ga consumption
	Papineau (2013)	2007	USA	Buildings	Modelling	+	Price premium: 2.7-10%
Standards	Rosenow et al. (2018)	-	Global	-	Review	_a	
	Lang (2004)	-	China	Buildings	Review	^a	
Price instruments							
Taxes	Villca-Pozo and Gonzales-Bustos (2019)	2018	Spain	Buildings	Modelling	_a	
	Sterner (2012)	-	_a	Transport	_a	-	The main beneficiaries are no the poor
	Stemer (2007)	-	OECD coun- tries	Transport	Analysis of price elasticities	-	The main beneficiaries are no the poor
Subsidy	Jiménez et al. (2016)	2007–2010	Spain	Transport	Difference in difference	+	Subsidies lead to an increase selling price of €600
Combination of tax and subsidies	Galarraga et al. (2016)	2012	Spain	Appliances	Dead weight loss estimation	_ ^b	Optimal combination of taxe and subsidies
	Jacobsen (2019)	-	_a	Appliances	Theoretical framework	a	
	Markandya et al. (2009)	2007	Europe	Household durables	Modelling	_*	Boilers: taxes are cost-effecti in Denmark and Italy Lightbulbs: subsidies are cost-effective in France ar Poland
	Panzone (2013)	2010–2012	UK	Appliances	Modelling	_b	Washing machines should b subsidised; lightbulbs and refrigerators taxed
Rebates	Galarraga et al. (2013)	2008–2009	Spain	Appliances	Dead weight loss estimation	-	Effect
	Houde and Aldy (2017)	2009	USA	Appliances	Difference in difference	_ ^a	Consumers do not always be energy-efficient appliance
	Datta and Filippini (2016)	2005–2007	USA	Appliances	Difference in difference	+	Increase in the sales share of U Energy Star appliances
	Drivas et al. (2019)	2011-2015	Spain	Buildings	Econometric model	+	Increase in the subsidy rate for lower income househol
	Olsthoorn et al. (2017)	2016	EU	Heating systems	Choice experiment	_b	A share higher than 50% of free riders

Source: own work

'+' positive impact; '-' negative impact

^aNo impact

^b Non-conclusive results

Value of energy labels

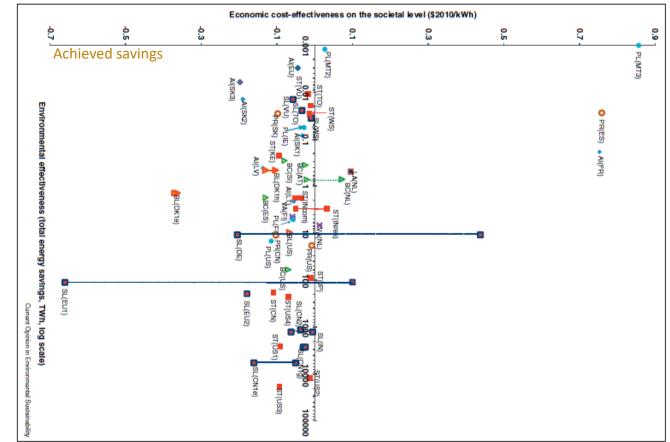
More energy efficiency products are generally more valued, and certificates help realise that value

For both building and appliance labelling schemes, the exact design of the scheme can affect impact

(Ramos et al., 2016)

Table 2 Empirical research on the value of certificates or labels for energy products.

Study	Sector	Results: WTP						
		Rent (effective)	Sales					
Eichholtz et al. (2010)	Commercial U.S.	3% (7%)	16%					
Eichholtz et al. (2013)	Commercial U.S.	3% (8%)	13%					
Wiley et al. (2010)	Commercial U.S.	7–9% Energy Star	30\$/f2 Energy Star					
		15–17% LEED	130\$/f2 LEED					
Fuerst and McAllister (2011a)	Commercial U.S.	4-5%	25%					
Fuerst and McAllister (2011c)	Commercial U.S.	3% Energy Star	18% Energy Star					
		5% LEED	25% LEED					
		9% Energy Star + LEED.	28–29% Energy Star + LEED.					
Reichardt et al. (2012)	Commercial U.S.	2.5% Energy Star						
		2.9% LEED.						
Das et al. (2011)	Commercial U.S.	Positive and dynamic						
Bloom et al. (2011)	Commercial U.S.		8.66\$/f2					
Kok and Jennen (2012)	Commercial Netherlands	-6%						
Fuerst and McAllister (2011b)	Commercial UK	Not significant	Not significant					
Chegut et al. (2013)	Commercial London	19.7%	14.7%					
Brounen and Kok (2011)	Residential Netherlands		3.6%					
Högberg (2013)	Residential Sweden		Positive WTP					
Hyland et al. (2013)	Residential Ireland	A: 1.8%	A: 9.3%					
		B: 3.9%	B: 5.2%					
		C: not significant	C: 1.7%					
		E: - 1.9%	E: not significant					
		F/G: - 3.2%	F/G: -10.6%.					
Cajias and Piazolo (2013)	Residential Germany	Total returns:						
		B: 2.27%						
		C: 2.34%						
		D: 2.69%						
		E/F: not significant						
		G: reference						
Yoshida and Sugiura (2011)	Residential Tokyo		Negative					
Deng et al. (2012)	Residential Singapore		4%					
Zheng et al. (2012)	Residential Beijing	Negative	Negative					
Wall et al. (2013)	Residential U.S.	_	Positive for houses built 1996-2005					
			Not significant for newer houses.					
			Values reach up to 20%					
Kahn and Kok (2014)	Residential California		9%.					



Comparing policies

- ST: Product energy performance standards (exclude minimum)
- LA: Product labels (voluntary)
- SL: Standard labelling (combination of standards and labels)
- BC: Building codes
- BL: Building certificates and labels
- PR: Green (or efficient) procurement rules
- PL: Public leadership programs
- AG: Voluntary agreements
- Al: Awareness raising and information programs

(Boza-Kiss et al., 2013)

17

Existing building stock

No one has yet come up with a good solution for mass improvements of existing building energy efficiency

Rules and mandates can prevent new building stock from adding to the issue, but it is generally not practicable to require existing buildings be brought up to code

This leaves it to the private market and mechanisms such as finance, information, and subsidy – limited efficacy

Buildings occupied by renters face particular challenges – the renters benefit from improvements but need owners to pay to make them

Table 1

Categorization of policy measures [Source: Bertoldi & Economidou., 2018].

Regulatory	Building codes; Minimum energy performance standards (MEPR) for new and existing buildings; Energy efficiency standards for appliances & equipment; Refurbishment obligations; Procurement Regulations; Phase- out of inefficient equipment.	
Financial and fiscal	Grants/subsidies; Preferential loans; Tax incentives; Energy taxation.	
Information and awareness	General Information; Information campaigns; Information Centres; Energy Audits; Energy labelling schemes; Governing by Example; Information exchange; Awareness campaigns; Demonstration programmes.	
Qualification, training and quality assurance Market-based	Professional training; Training courses; Vocational education, quality standards. Incentives facilitating Third Party Financing/ ESCOs; Energy Efficiency Obligation Schemes (EEOSs); White certificates; Incentives for the producers of innovative technologies; Technology deployment schemes.	
Voluntary action	Voluntary certification and labelling programs; Voluntary and negotiated agreements.	
Infrastructure investments	Investments in transportation infrastructure	u et al., 2020
Other	Other measures that do not fall under one of the above categories (e.g. research innovation and innovation programme, demonstration projects).	From Economidou et al., 2020

Policy for existing buildings

"So far, the evaluation and assessment of existing policies for EE in buildings (Table 1) suggest that there is no single policy that alone can achieve a substantial transformation of the existing building stock and reduce significantly energy consumption." (Economidou et al, 2020)

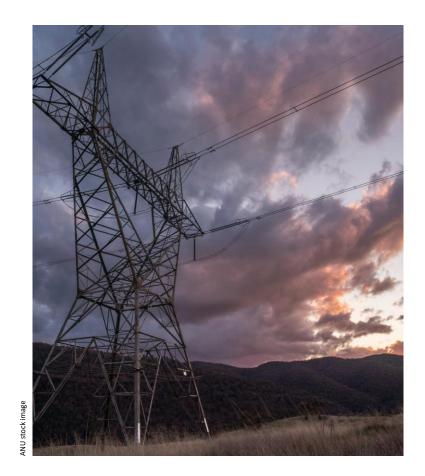
It is particularly critical for countries that are rapidly expanding built infrastructure to consider implementing strong standards sooner rather than later

Thinking about energy efficiency policies currently used in your countries, why do you think these strategies were chosen?

Existing policies	Reasons for choices

	What do you opportunities	u see as es for future policy?					
Opportunities for future		Why?					
21 LEE WHITE, ANU ENERGY EFFICIENCY FOR ETP			18/05/2023	~			

DEVELOPING TOOLS


What situations is each tool good for?

Voluntary standards tend to have lower costs, but less certain environmental benefits

Minimum required standards have clear environmental benefits, but without sufficient underlying data can be challenging to implement and may raise concerns about cost to consumers

Financial measures can be expensive to implement and may not reach desired effectiveness

Information measures don't always have expected impact, but can be relatively cheap to implement and can begin to build a database for future improvements

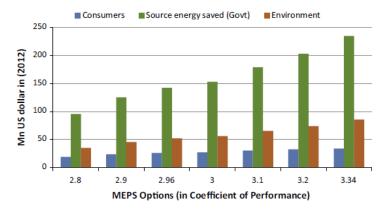


Fig. 5. Benefits of consumers, government, and the environment through 2030.

Local policies

Policies for energy efficiency (and anything else) need to make sense for the place where they are implemented

In setting minimum energy performance standards, for example, governments tend to run extensive assessments to find a level of policy that supports energy goals without too much burden on consumers and country (Shi, 2015)

This can be challenging in places that do not have a lot of resources for testing and analysis, or do not have a lot of historical data to work with (Shi, 2015)

They develop an assessment method with a lower data burden, using a relatively small consumer survey and collecting information from manufacturers on available technologies (including how international market shapes cost and availability)

Shi, 2015

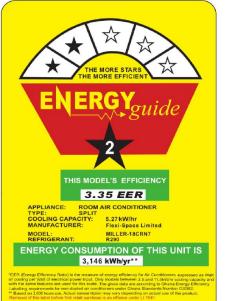


Fig. 1. Ghanian Energy label.

Kuhn et al., 2022

COMPANY ABC Brand: Model: Website Power input: ore stars and ore energy COOLING PERFORMANCE FACTOR (CSPE) 4.96 COULING CAPACITY 3.33 For additional information ask your dealer or go to the **Department of Energy** Vebsite: www.doe.gov.ph

Fig. 2. Philippine Energy label.

Energy labels in the Philippines and Ghana

Study of middle-income households in Philippines and Ghana (Kuhn et al., 2022) found that:

- Consumers care for energy efficiency and are influenced by an energy efficiency label.
- ACs with a higher energy efficiency rating are preferred and so are ACs with a better cooling technology.
- Within the range of existing market prices, the energy rating has a bigger impact on AC choices than the price.
- Higher environmental concern and knowledge increased the value of energy efficiency in the Philippines and, partially, in Ghana.

Change over time

A key feature of energy efficiency policy in places like the EU and Australia is evolution over time

- There is often growing complexity and addition of more policy types over time
- e.g. Figure to the right of UK of energy efficiency policy over time (from Kern et al., 2017)

_		_	-	<u> </u>	_	_	_		_	-	_	<u> </u>	-	
2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Building	Regulatio	ns, Part L	. (R)		Δ	Δ	95.95.5550			Δ				_A
Home In	nproveme	ent Agenc	ies (HIAs)) (I)										
EESOP (I	R)	2002 EE	C1(R)	AV/81	_ <u>2005</u> E	EC 2 (R)_		2008 C	ERT (R)				_ <u>2013</u> E	
Reducer	d VAT (200	00) on EE	materials	s (T)										
2000 W	arm Hom	es and En	ergy Cons	servation	Act (R)_									>
2000 De	2001 En	hanced C	anital All	owance /										····
	2001 CI	imate Cha	ange Levy	(T)										
			2003 Er	nergy Pro	gramme ([R&D]								
			2003 Su	istainable	Commun	nities (S) Energy Sa								
						ct (L)								
				100-100-100-100 AU		2006 M	larket Tra	nsformat	ion Progr	amme (I)				
						2006 CI	imate Ch	ange & Si	ustainable ustainable	Energy	Act (R)			>
									hnologies					
13							2007 N	lodern Bu	ilt Enviro	nment Kr	nowledge	Transfer	Network	(R&D)
E							2007 E	2008 Per	formance anning ar	Certifica d Energy	tes (R)			•
Σ									w Impact					
RU.									imate Ch					
POLICY INSTRUMENTS								2008 Li	ving with					
5											oducts Pr			ent Programme (I, P)_
5									2009 N					ent Energy Efficiency Scheme (R)
ō														g Standards (P)
₽.														ewable Heat Incentive (S)
											2011 E	nergy Effi	ciency Fir	nancing Scheme (S)
											2011 R	E:FIT (S)_		
												2012 U		Investment Bank (S) >
														Capacity Mechanism (S)
														Display Energy Certificate (R] Carbon Floor Price (T)
														Non-domestic Green Deal (L)
LE	GEND: A =	Update	of policy,	= End o	f policy,	> =p	olicy con	tinues					2013 0	Sreen Deal (L) 2014 Domestic Renewable Heat Incentive (S)
					curemen	t, R = Reg	gulation,	R&D = Re	search an	d Develo	pment,			2014 Domestic Renewable Heat Incentive (S)
	= Subsidy,	I = Iax, y	- volum	con y										

Fig. 2. The development of the UK policy instruments for building energy efficiency, 2000-2014.

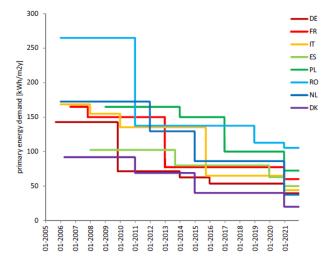


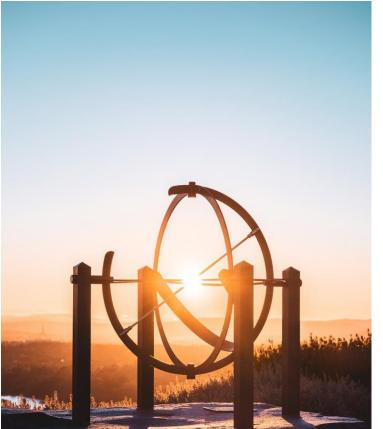
Fig. 3. Improvement of residential minimum energy performance requirements in some key Member States, since the entry in force of the first EPB Directive.

Economidou et al., 2020

Change over time

Standards are often tightened over time

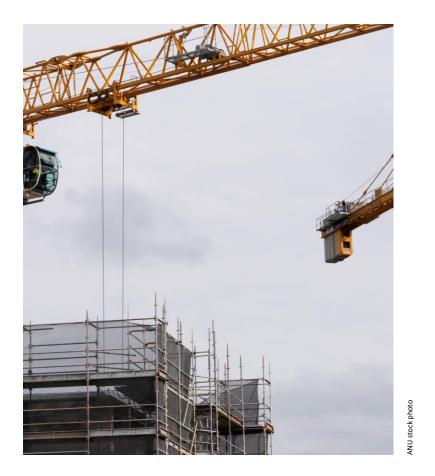
For example, in the EU, many member states have increased minimum energy performance requirements over time


Australia has also increased these standards over time, and is continuing to do so

This is also often the case for appliance and product standards

For example, US Corporate Average Fuel Economy (CAFÉ) standard has changed over time to increase mile/gallon requirements for vehicle fuel efficiency

Sometimes led at the sub-national level


NU stock image

Tracking data is important

Without collection/tracking over time of housing stock energy efficiency, it can be challenging to determine what to target for future change, and challenging to understand which existing strategies are most effective

Setting in place mechanisms to collect information on building and product energy efficiency can support future efforts for improvement

Climate change

Climate change is expected to increase frequency and severity of extreme weather events including heatwaves

These events can place severe stress on electricity grids

Buildings that are able to stay within safe temperature ranges while using less energy will be one of the many things that it's important to have in this new environment

Lock in is also an issue

In places were cities are growing, a lot of infrastructure is being built

If more efficient infrastructure is built, fewer emissions will be locked in for future

Much harder to change retroactively

What constraints do you see to improving energy efficiency in your country?

Which of the strategies discussed today do you think may be useful? Why this strategy?

What stood out to you?	How could your country use it?

Did you begin the session with questions about energy efficiency that you still don't know the answers to?

Do you have new questions, and if so what are they?

THANK YOU

Contact Us

Lee White Zero Carbon Energy for the Asia-Pacific Grand Challenge School of Regulation and Global Governance <u>lee.white@anu.edu.au</u>

References

Boza-Kiss, B., Moles-Grueso, S., Urge-Vorsatz, D.: Evaluating policy instruments to foster energy efficiency for the sustainable transformation of buildings. Curr. Opin. Environ. Sustain. 5, 163–176 (2013). https://doi.org/10.1016/j.cosust.2013.04.002

Economidou, M., Todeschi, V., Bertoldi, P., D'Agostino, D., Zangheri, P., Castellazzi, L.: Review of 50 years of EU energy efficiency policies for buildings. Energy Build. 225, 110322 (2020). <u>https://doi.org/10.1016/j.enbuild.2020.110322</u>

Hjortling, C., Björk, F., Berg, M., Klintberg, T. af, af Klintberg, T.: Energy mapping of existing building stock in Sweden – Analysis of data from Energy Performance Certificates. Energy Build. 153, 341–355 (2017). https://doi.org/10.1016/J.ENBUILD.2017.06.073

IPCC AR6 WG III: IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. doi: 10.1017/9781009157926

Kern, F., Kivimaa, P., Martiskainen, M.: Policy packaging or policy patching? The development of complex energy efficiency policy mixes. Energy Res. Soc. Sci. 23, 11–25 (2017). <u>https://doi.org/10.1016/j.erss.2016.11.002</u>

Kuhn, S., Kutzner, F., Thøgersen, J.: How to make energy efficiency labels more effective: Insights from discrete choice experiments in Ghana and the Philippines. Energy Res. Soc. Sci. 84, (2022). <u>https://doi.org/10.1016/j.erss.2021.102320</u>

Ramos, A., Gago, A., Labandeira, X., Linares, P.: The role of information for energy efficiency in the residential sector. Energy Econ. 52, S17–S29 (2015). https://doi.org/10.1016/j.eneco.2015.08.022

Rosenow, J., Fawcett, T., Eyre, N., Oikonomou, V.: Energy efficiency and the policy mix. Build. Res. Inf. 44, 562–574 (2016). https://doi.org/10.1080/09613218.2016.1138803

Shi, X.: Application of best practice for setting minimum energy efficiency standards in technically disadvantaged countries: Case study of Air Conditioners in Brunei Darussalam. Appl. Energy. 157, 1–12 (2015). <u>https://doi.org/10.1016/j.apenergy.2015.07.071</u>

Solà, M. del M., de Ayala, A., Galarraga, I., Escapa, M.: Promoting energy efficiency at household level: a literature review. Energy Effic. 14, (2021). <u>https://doi.org/10.1007/s12053-020-09918-9</u>

