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Abstract

In recent years, a rapid and dramatic increase in electrical power generation from renewable energy

sources has been observed in many countries. Rapid increases in grid-connected small-scale solar

photovoltaics (PV) have been driven by government incentives and renewable energy rebates, including

residential feed-in tariffs and the financial policy of net metering. However, new challenges arise in

balancing the generation of electricity with variable demand at all times as traditional fossil fuel-fired

generators are retired and replaced with intermittent renewable electricity sources.

This thesis looks at ways to balance distributor and customer benefits of battery storage co-located

with solar PV, with a view to facilitating continual increases in grid-connected solar PV. Two issues

that arise when accommodating significant residential-scale PV generation are addressed: the first

is reverse power flow that leads to considerable voltage rise; the second corresponds to peak loads

that occur infrequently, but potentially lead to the need for costly network augmentation when PV

generation is unavailable. The benefits associated with addressing these two distributor issues are

balanced with the benefit of scheduling battery storage to improve operational savings that accrue to

customers.

Conventional approaches to managing peak loads and reverse power flows in distribution networks

vary from country-to-country, since they are often driven by government policies and regulation. In

the Australian context, the first part of the thesis introduces typical costs associated with the design

and operation of electrical networks to assess the economic viability of large-scale energy storage. We

also introduce a publicly available dataset consisting of load and rooftop PV generation for 300 de-

identified Australian residential customers in a distribution network. All simulation-based results in

the thesis incorporate data from this publicly available dataset.

The second part of the thesis considers potential savings that accrue to residential customers that

co-locate battery storage with solar PV. We address reverse power flow and peak-loads coincident with

peak pricing periods where the residential customer designs battery charge and discharge schedules.

This leads us to a constrained optimization-based problem that we formulate as a quadratic program.

The third part of the thesis focuses on coordinated approaches to charge and discharge residential

battery storage. Emphasis is given to the management of bi-directional power flows in a distribution

grid, and the maintenance of supply voltages within prescribed limits. This has motivated a novel

approach to Adaptive-Receding Horizon Optimization (A-RHO). We implement our A-RHO approach

in a GridLAB-D model of an Australian distribution network to assess the distributor benefits.



Introduction

Climate change, national energy security, and the declining economic availability of fossil fuel

resources are key drivers for the integration of renewable energy sources such as solar into the

modern power grid [1–4]. These drivers, in conjunction with renewable energy incentives such as

feed-in tariffs [4–7] and the financial policy of net metering [8–11], have lead to a rapid and dramatic

uptake of residential-scale solar photovoltaics (PV) in some countries [12,13]. As the capital cost of

small-scale PV continues to drop [14], and electricity prices continue to increase [12], it is expected

that this trend in significant PV uptake will continue into the next decade [13,15].

However, there are significant challenges in converting the abundant solar resource into reliable,

high-quality electricity [16–19]. Challenges include the variability of solar irradiance on both

daily and seasonal timescales in addition to intermittency arising from moving cloud cover on

much shorter timescales [17,18]. Further, new challenges in balancing the generation of electricity

with variable demand at all times arise as traditional fossil fuel-fired generators are retired and

replaced with these intermittent renewable sources [19–21]. Despite the challenges, there was a

480% increase in Australian solar PV installations in a single year from 2009 to 2010, of which

99% was grid-connected [22, 23]. Further, there is more than 3.8 GW of installed rooftop PV in

Australia [24], up from 1 GW in 2012 [23]. In the United States, there is more than 16 GW of

installed solar PV [25], up from 0.8 GW in 2010 [26]. PV plant installations in Germany exceed

1.2 million, and as of September 2012, peak PV capacity reached 31 GW with about 70% of this

capacity being connected to the low voltage grid [27].

Literature Overview

As residential PV penetration continues to increase, the management of supply voltages within

operational limits becomes increasingly challenging for distribution operators [27–44]. For example,

if PV generation exceeds the demand of a residential customer in addition to demand in the

downstream distribution feeder, the excess PV generation is pushed upstream creating voltage

rise [29–32]. Voltage rise that exceeds an upper tolerance with respect to the nominal supply

voltage, potentially occurs when a large number of rooftop PV generators are connected in close

proximity to each other [33–39]. Voltage dips are another concern when grid-connecting a large



2

number of rooftop PV generators in close proximity to each other [28]. For example, a voltage dip

potentially occurs when passing cloud cover results in a significant drop in rooftop PV generation

that would otherwise be servicing residential load [35–37,40]. If these voltage deviations fall outside

power quality standards, either the utility covers the direct cost of mitigation or the burden of

voltage regulation falls to the PV producer [18,27,29,33,38].

There are two common approaches to managing voltage rise in the low voltage grid. The first is

to augment the distribution grid by increasing conductor size and/or upgrading transformers to

lower network impedances [27,34,41,45]. The second is to constrain PV generation at times of low

electricity consumption in order to preserve compliance of allowable voltage deviations [29,42,46].

Neither approach is optimal for significant PV penetration, as network augmentation adds to the

overall PV grid integration costs [34, 45] whereas spilling PV generation leads to lost revenue for

the producer [31,32].

There are a number of emerging approaches to overcome non-compliant voltage deviations aris-

ing from the intermittency and variability of solar PV, with applicable incentives, mandates and

regulation driving the solutions. Some of these approaches include energy storage [47–50], direct

load control [51, 52], price-responsive load control [53–56], active PV generation curtailment [57],

and enhanced PV inverter control to manage real and reactive power output [58,59]. Different in-

centives driving these approaches include dynamic day-ahead electricity tariffs [53,60], reductions

in appliance-specific electricity billing [51, 61], standards curbing PV production [42], and energy

storage mandates such as those in California [62]. Depending on the incentives and regulatory

environment, one or more of these approaches may serve as a demand management option for a

distribution operator faced with significant PV penetration [63, 64]. More specifically, enhanced

PV inverter control alone does not always maintain distribution voltages within set tolerances [64].

Consequently, coordinated control of PVs and battery energy storage has been proposed in [65–68].

Without careful coordination, however, the potential benefits of demand-side approaches to man-

aging bi-directional power flows in a distribution network might not be realized [14,51,69,70]. For

example, a second load peak in the distribution grid may occur when autonomous, time-based

battery charging schedules are implemented [14,51], potentially leading to a need for costly distri-

bution reinforcement [14]. Furthermore, increases in reverse power flows (or peak loads) potentially

occur when battery storage units connected to a distribution grid are discharged (or charged) in

response to time-varying electricity prices [71], which may also necessitate network investment. In

recent work [11] we illustrate a second ‘rebound’ load peak in addition to an increase in reverse

power flow occurs across a day, when customers schedule battery storage co-located with solar PV
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with the aim of minimizing their electricity bill (or maximizing their operational savings).

Several authors have considered approaches that co-locate battery storage with solar PV with

a focus on reducing network peak demand [72–78], potentially leading to battery schedules that

either mitigate or exacerbate voltage rise associated with reverse power flow when inverters operate

at unity power factor [58,77]. The reduction of network peak demand is incorporated into a linear

program in [72], where the energy flowing from the point of common coupling (PCC) to the

customer is minimized when residential load exceeds residential PV production. Otherwise the

battery is scheduled in [72] to charge during the off-peak pricing period, and discharge during

the peak pricing period, with no limit on reverse power flow (i.e., the power delivered to the

grid). Consequently, battery scheduling in [72] potentially induces voltage rise at the PCC. The

reduction of network peak demand is also incorporated into an optimization problem in [73], where

the objective function includes financial incentives for residents to deliver energy to the grid when

the purchase cost of electricity is high. Hence, when interconnected customers in close proximity

minimize the objective function in [73], large voltage swings associated with reverse power flow

potentially arise due to the battery scheduling.

In contrast, peak demand and reverse power flow is reduced by solving the optimization problems in

[74,79], where the objective functions eliminate residential subsidies for electricity delivered to the

grid and include payments for electricity received from the grid. Thus, the optimization problems

in [74, 79] potentially reduce voltage rise associated with reverse power flow. The optimization

problem in [75] also removes incentives for reverse power flow associated with battery scheduling,

while permitting incentives encouraging solar PV uptake. In addition, the optimization problem

in [75] includes residential payments for electricity received from the grid. Consequently, the

optimization problem in [75] leads to reductions in both peak demand and reverse power flow,

potentially mitigating voltage rise. Another method for reducing both peak demand and reverse

power flow is incorporated into the optimization problem in [76], where a sophisticated dynamic

pricing environment provides additional incentives for customers to smooth their day-ahead energy

consumption. Hence, the optimization problem in [76] potentially abates voltage rise associated

with reverse power flow.

Alternatively, coordinated approaches to managing bi-directional power flows in a distribution net-

work have been proposed in the recent literature [71,80,81]. For example, a linear program (LP) is

employed in [71] to reduce peak power flows (potentially in the reverse direction) through a distri-

bution substation. Furthermore, [71] proposes direct control of a customer’s battery schedule by

the distributor when the LP-based power flow reductions are required. The optimization problem
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in [80] includes penalties for large power fluctuations to and from an interconnection point that

connects a smart grid to an upstream electricity network. To reduce power fluctuations within a

distribution grid, [80] proposes direct control of demand-side battery schedules by a distributor.

In contrast, a central energy management system (EMS) in [81] coordinates supply and demand

within a microgrid in a number of ways. For example, a central EMS in [81] either dispatches

power flow references to customers connected to a microgrid, or directly controls battery charge

and discharge schedules of each microgrid customer. That is, each microgrid customer in [81]

has a local EMS that manages residential battery schedules subject to central EMS references or

directives.

Other coordinated approaches to improving supply voltages in a distribution network are con-

sidered in [65, 82–85], and include charging a residential battery co-located with solar PV when

a predetermined threshold for PV generation is exceeded [82]. In [83–85] a main control center

coordinates battery charge/discharge rates, where the main control center in [83] collects supply

voltages, supply frequencies, and the state of charge of each battery. With the exception of our

recent work [84, 85], none of these approaches incorporate and balance increases in operational

energy savings that accrue to customers with battery storage as defined in Chapter 3.

In this thesis we consider a balance in benefits to a utility and customer, in the context of grid-

connected residential-scale battery storage co-located with solar PV. We propose optimization-

based approaches to schedule residential battery storage, with a direct focus on balancing financial

benefits for a customer with utility benefits in managing bi-directional distribution power flows, and

an indirect focus on incorporating low requirements for sensing and communications infrastructure.

In our assessment of the financial benefits that accrue to a customer with battery storage, we

consider operational savings or reductions in energy bills for a cross-sectional sample of customers

located in Sydney and regional New South Wales (NSW), Australia. In our assessment of the utility

benefits we present aggregate power flows to or from residential customers, and consider supply

voltages within an Australian distribution network with significant residential PV penetration.

Our overarching objective is to balance distributor and customer benefits of battery storage co-

located with solar PV, with a view to facilitate continued increases in distributed, small-scale PV

generation.
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Key Contributions of this Thesis

The key contributions of this thesis are:

• a report extract that informed Australian policy makers on the economic viability and impacts

of electrical energy storage on the National Electricity Market (NEM) 2015–2035,

• a detailed description of a publicly available dataset comprised of interval readings of load

and PV generation for each of 300 residential customer, that forms the basis of each case

study presented in the thesis,

• a linear program (LP)-based scheduling algorithm that maximizes operational savings that

accrue to customers with grid-connected battery storage,

• a case study demonstrating the LP-based approach potentially leads to undesirable conse-

quences for a distributor, that is, when all customers discharge battery storage during the

peak pricing period, reverse power flow creating significant voltage rise potentially occurs,

• a quadratic program (QP)-based scheduling algorithm that minimizes of the energy supplied

by, or to, the grid in a residential PV system with co-located battery storage,

• a greedy-search heuristic that selects the key design parameters in the QP-based scheduling

algorithm to improve operational savings that accrue to customers,

• a case study demonstrating a balance in the customer and utility benefits of the QP-based

scheduling algorithm,

• two coordinated QP-based approaches to adjust and improve the balance in managing bi-

directional distribution power flows with increases in operational savings that accrue to cus-

tomers,

• a case study confirming a centralized approach to coordinating residential battery storage is

preferable in that no customer is disproportionately penalized for reducing peak load and/or

reverse power flow in a distribution network,

• a case study confirming the customer payback period for a 10 kWh battery is in the vicinity

of 6 years when a centralized approach to coordinating residential battery storage is imple-

mented,

• two receding horizon optimization (RHO)-based algorithms for coordinating residential bat-

tery storage to further improve the balance in managing (1) bi-directional distribution power
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flows and associated supply voltages, with (2) increases in operational savings that accrue to

customers,

• a case study confirming an adaptive (A)-RHO algorithm more directly improves supply volt-

ages in a low voltage network,

• a case study with a realistic distribution-level electricity network model, showing a peak

load reduction of 32% along a medium voltage feeder when approximately 50% of residential

customers implemented a distributed (D)-RHO algorithm.

List of Publications

A complete list of publications related to this thesis is provided below.
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tional Journal of Electrical Power and Energy Systems, accepted for publication 27 January 2016.1

E. L. Ratnam, and S. R. Weller, “Receding horizon optimization-based approaches to manage sup-

ply voltages and power flows in a distribution grid with battery storage,” submitted for publication

15 October 2015, under review.

Technical Reports
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Power System Dynamics and Control -IX (IREP), Rethymnon, Greece, 25–30 Aug. 2013, pp. 1–8.

E. L. Ratnam, S. R. Weller, and C. M. Kellett, “Assessing the benefits of net metering with

residential battery storage,” in Proc. 3rd ASEAN Australian Engineering Congress on Innovative

Technologies for Sustainable Development and Renewable Energy (AAEC 2015), Singapore, 11–13

Mar. 2015, pp. 78–83.

Overview of Thesis Content

The remainder of this thesis is organized into three thematic parts, and we include an additional

chapter for conclusions. The first part includes background material, provides context, includes a

detailed description of the dataset used throughout the thesis, and serves as a high-level overview.

Part 2 introduces a single residential system, and Part 3 incorporates the residential system into

a larger distribution network. The introduction of each chapter in Part 2 and Part 3 incorporates

a focused literature review, that places the work in an established body of knowledge and links

papers (from prior chapters) included in the thesis. At the beginning of each chapter of the thesis,

an explanatory overview is provided to link the separate papers included in the thesis.

References at the end of the thesis refer to the introductory and concluding chapters of the thesis,

and main body chapters contain a literature review and a list of references. An outline of the

remaining chapters of the thesis follows.

Part 1 Overview and context

• Chapter 1 investigates the economic viability of large-scale battery storage. We pro-

pose two case studies to investigate factors influencing the economic viability of en-

ergy storage for (1) power system operators and (2) large industrial-sized customers,

respectively. Background material is included to provide context for the underlying
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assumptions considered in this chapter and the remainder of the thesis.

• Chapter 2 reports a publicly available dataset considered in the remaining chapters of

the thesis. The dataset consists of load and rooftop PV generation for 300 de-identified

residential customers in an Australian distribution network. Following a detailed de-

scription of the dataset, we identify several means by which anomalous records (e.g. due

to inverter failure) are identified and excised. All papers in this thesis incorporate data

from this publicly available dataset.

Part 2 Battery scheduling: A single residential system

• Chapter 3 proposes an optimization-based algorithm for the scheduling of residential

battery storage co-located with solar PV, in the context of PV incentives such as feed-in

tariffs. We present a quadratic program (QP)-based algorithm that is applied to mea-

sured load and generation data from 145 residential customers located in an Australian

distribution network. The results of the case study confirm the QP-based scheduling

algorithm significantly penalizes reverse power flow and peak loads corresponding to

peak time-of-use billing.

• Chapter 4 presents a linear programming (LP)-based approach to designing day-ahead

battery charge and discharge schedules when any generation in excess of residential load

is compensated by the electricity retailer via net metering. We further show that when

net metering is used, that it is possible to balance the objective of the utility in limiting

reverse power flow, with the customer objective of increasing operational savings, with

the QP-based approach first presented in Chapter 3.

Part 3 Battery scheduling: Coordinated residential systems

• Chapter 5 addresses the problem of managing reverse power flow and peak loads within

a distribution network. We propose a two optimization-based algorithms for coordinat-

ing residential battery storage when solar photovoltaic (PV) generation in excess of load

is compensated via net metering, extending the framework presented in Chapter 4. A

case study confirms a centralized approach to coordinating residential battery storage

is preferable to a more localized approach, in that no customer is disproportionately

penalized for reducing peak load and/or reverse power flow in a distribution network.

• Chapter 6 considers three key problems that may occur infrequently in Australian

distribution networks, but could potentially lead to costly remediation for distributors:

1. significant reverse power flows along a medium voltage feeder that may render ex-

isting voltage control and/or protection schemes (designed for uni-directional power
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flow) inadequate,

2. peak electricity demand non-coincident with PV generation approaching a medium

voltage network capacity, and

3. supply voltages in a low voltage network that are above or below allowable thresh-

olds.

To address these three key problems we propose two receding horizon optimization-

based algorithms that incorporate updates in forecast information at each time step.

Both algorithms include one or more of the objective functions presented in Chapter 5,

and are applied to a GridLAB-D model of an Australian distribution region located in

the suburb of Elermore Vale, NSW to assess the distributor benefits.

• The final chapter draws conclusions and describes possible future research directions.



Part 1

Overview and context
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Assessment of the economic
viability of energy storage

Part 1 of this thesis is comprised of Chapter 1 and Chapter 2. These chapters provide a high-level

overview, introduce an Australian historical load and PV generation dataset, and set the scene for

the contributions in the remainder of the thesis.

Chapter 1 is comprised of Sections 5.1 and 5.2.2 of a technical report published by the AEMC

titled Future Energy Storage Trends: An Assessment of the Economic Viability, Potential Uptake

and Impacts of Electrical Energy Storage on the NEM 2015-2035 [14]. To improve clarity, we have

reformatted the referencing in this report extract.

The full AEMC report [14] informs Australian policy makers on the economic viability and impacts

of electrical energy storage on the National Electricity Market (NEM) in the context of the present

day and into the foreseeable future. Material from Section 5 of the AEMC report is included in

Chapter 1 to clearly establish that the findings of the thesis are indeed relevant and applicable

to present-day electrical networks. For example, in Chapter 1 a preview for some of the results

presented later in Chapter 5 of this thesis is provided to highlight the relevance of coordinated

residential battery scheduling for peak demand reduction and reverse power flow management in

an electrical power network. The costs computed at the end of the report extract (page 22) are

considered reasonable in the context of the full AEMC report, where Li-ion battery technology

costs are reported to be in the vicinity of $500/kWh today, with prices expected to drop below

$300/kWh in the foreseeable future (see Fig. 4 and Table 1 in the full AEMC report.)

Chapter 2 reports a publicly available dataset of historical load and PV generation for 300 Aus-

tralian residential customers. This dataset is considered in the remaining chapters of the thesis,

and provides context for the case studies in the following two parts in the thesis.
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5. Economic	viability	of	storage	

5.1 Distribution	and	transmission	networks	

Various	factors	affect	the	economic	viability	of	Energy	Storage	(ES)	for	power	system	operators	
responsible	for	the	design,	operation	and	maintenance	of	electrical	networks	that	supply	the	
essential	service	of	electricity	to	homes,	businesses	and	industry.	These	factors	include:		

• annual	consumption	and	electricity	demand	profiles	in	the	distribution	or	transmission	
networks	

• generation	profiles	of	grid-connected	renewables	(e.g.	solar	PV)	
• capacity	limits	and	reliability	indices	as	prescribed	in	the	licence	conditions	for	electrical	

operators	

• the	upfront	and	ongoing	costs	of	Energy	Storage	Systems	(ESS)	

• expected	life	and	operational	performance	of	ESS.	

This	section	considers	costs	associated	with	the	design	and	operation	of	electrical	networks	to	
assess	the	economic	viability	of	ES	for	distribution	or	transmission	operators.		

5.1.1 Background	

In	the	transmission	of	electricity,	the	role	of	the	network	is	to	deliver	electrical	energy	from	large-
scale	generators	to	a	bulk	supply	point.	The	subtransmission	network	then	delivers	this	electricity	
to	zone	substations	and	large	industrial	customers.	The	distribution	network	subsequently	delivers	
this	electricity	directly	to	the	end	user	via	a	point	of	common	coupling.	In	more	detail,	distribution	
‘feeders’	operate	at	medium	voltages	(MV),	for	example,	at	a	nominal	11	kV.	From	these	feeders,	
MV	loads	are	supplied,	or	small	distribution	transformers	step	the	voltage	down	to	a	more	
practical	low	nominal	voltage	from	which	a	number	of	low	voltage	(LV)	loads	are	supplied,	as	
shown	in	Figure	1.		

Australia	has	thousands	of	kilometres	of	MV	distribution	network.	Most	of	the	distribution	feeders	
consist	of	overhead	lines,	since	overhead	construction	costs	are	significantly	less	then	
underground	ones	[1].	Moreover,	in	the	Australian	context,	it	is	typical	for	rural	distribution	
networks	to	incorporate	single	wire	earth	return	(SWER)	feeders.	SWER	systems	use	the	earth	as	a	
return	path	for	the	current	drawn	by	loads,	and	are	typically	cheaper	than	more	traditional	feeder	
topologies	of	similar	capacity.	

Distribution	networks	typically	incorporate	active	network	components	such	as	on-load	tap	
changing	transformers,	voltage-regulating	transformers	and	shunt	capacitors.	Transformers	that	
supply	distribution	feeders	(e.g.	33	kV/11	kV	transformers)	are	often	fitted	with	voltage	regulation	
capabilities,	such	as	control	schemes	that	operate	on-load	tap	changers	(OLTC).	Transformers	that	
step	down	MV	to	LV	typically	have	fixed	tap	setting	that	can	be	changed	by	a	distribution	network	
service	provider	(DNSP)	if	required.	Rural	MV	distribution	feeders	often	incorporate	one	or	more	
voltage-regulating	transformers	along	a	feeder	to	ensure	that	the	nominal	LV	delivered	to	



	

customers	is	within	the	+10%	to	–6%	tolerance	required	[2,	3].	Moreover,	shunt	capacitors	on	MV	
feeders	or	within	zone	substations	are	often	fitted	with	controls	to	provide	voltage	regulation	or	
power	factor	correction	(or	both),	in	order	to	improve	the	quality	of	the	electricity	supplied	to	
customers.		

	

Figure	1:	Indicative	single-line	diagram	of	the	electrical	network	as	a	whole,	showing	where	MV	and	LV	distribution	
networks	are	placed	

HV,	high	voltage;	LV,	low	voltage;	MV	medium	voltage	
Note	that	the	distribution	networks	effectively	begin	at	the	secondary	side	of	zone	substation	transformers	and	end	at	MV	and	LV	
loads.	

DNSPs	are	responsible	for	design,	operation	and	maintenance	of	distribution	networks	that	supply	
the	essential	service	of	electricity	to	homes,	businesses	and	industry.	The	reliability	of	a	
distribution	network	is	measured	by	a	number	of	indices	[4,5].	These	indices	are	prescribed	in	the	
licence	conditions	for	electricity	distributors	[6,	7]	and	they	comprise:	

• the	average	minutes	off	supply	per	customer	due	to	planned	and	unplanned	outages	(the	
system	average	interruption	duration	index,	SAIDI)	

• the	average	number	of	unplanned	interruptions	per	customer,	excluding	momentary	
interruptions	(the	system	average	interruption	frequency	index,	SAIFI).	
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These	indices	are	used	to	calculate	penalty	payments	owing	to	customers	when	DNSPs	fail	to	meet	
guaranteed	service	levels	set	by	the	Australian	Energy	Regulator	[6].		

In	what	follows	we	define	LV	phase-to-neutral	by	a	nominal	230	V,	with	a	tolerance	of	+10%	to		
–6%,	as	defined	in	the	Australian	Standard	AS	60038	[2].	MV	are	defined	by	a	range	of	phase-to-
phase	values,	from	a	nominal	1	kV	to	a	nominal	22	kV.	Any	phase-to-phase	voltage	from	a	nominal	
33	kV	up	to	132	kV	is	recognised	as	a	subtransmission	voltage.	Voltages	above	and	including	
220	kV	phase-to-phase	are	recognised	as	a	nominal	transmission	voltage.		

5.1.2 What	are	grid	infrastructure	costs?	

To	meet	guaranteed	services	levels	set	by	the	Australian	Energy	Regulator	[6],	a	DNSP	might	seek	
to	use	battery	storage.	For	example,	if	peak	demand	in	a	distribution	grid	is	expected	to	exceed	
network	capacity,	then	battery	storage	may	provide	a	cost-effective	solution	if	the	alternative	is	to	
increase	the	capacity	of	the	distribution	grid.	Before	considering	the	potential	of	battery	storage	
to	reduce	capital	costs	that	would	otherwise	be	incurred	by	electric	power	system	operators,	we	
first	define	some	generic	costs	associated	with	transmission	and	distribution	infrastructure.	A	
number	of	sources	have	been	identified	that	provide	estimates	of	the	costs	associated	with	
installing	and	connecting	distribution	or	transmission	infrastructure	to	the	electricity	grid	in	
Australia	[8–22].	In	what	follows	we	have	collated	and	adjusted	these	estimates	in	order	to	
estimate	present-day	costs	for	installing	and	connecting	such	infrastructure.	The	generic	estimates	
presented	in	what	follows	have	an	uncertainty	of	approximately	±50%.	Table	1	shows	the	assumed	
overhead	and	underground	construction	costs	to	a	feeder	or	substation.	

	 	



	

Table	1:	Assumed	overhead	and	underground	construction	and	connection	costs	(to	a	feeder	or	substation)	for	the	
period	2015–2020,	by	voltage	

Voltage UG construction 
costs 

OH construction 
cost 

Connection costs  

415 V $0.6 m/km $0.010 m/km $450–$40,000 

11 kV $0.7 m/km $0.014 m/km $0.1 m–$1 m (connection in a substation or an 
OH/UG teeda connection, including protection 
and control infrastructure) 

66 kV $5 m/km $0.55 m/km $6 m (connection in a substation or an OH teed 
connection, including protection and control 
infrastructure) 

132 kV $6 m/km $0.75 m/km $10 m (connection in a substation or an OH teed 
connection, including protection and control 
infrastructure) 

220 kV $10 m/km $1 m/km $20 m (connection in a substation or an OH teed 
connection, including protection and control 
infrastructure) 

330 kV $15 m/km $1.8 m/km $30 m (connection in a substation or an OH teed 
connection, including protection and control 
infrastructure) 

OH,	overhead;	UG,	underground	
Costs	are	in	AUD,	where	‘m’	denotes	a	factor	of	$1	000	000	
a	A	teed	connection	is	one	that	is	parallel	to	an	existing	UG	or	OH	line.	

5.1.3 What	are	grid	capacity	limits?	

When	infrastructure	in	the	electricity	grid	reaches	a	capacity	limit,	distributors	or	transmission	
operators	typically	incur	costs	associated	with	re-enforcing	the	electricity	grid.	Capacity	limits	are	
often	described	in	terms	of	thermal	limits	(with	current	or	power	ratings)	or	voltage	limits,	for	
particular	network	configurations	[7].		

Because	overhead	conductors	are	exposed	to	the	elements,	differences	in	ambient	air	
temperature	and	wind	speed	affect	the	current	carrying	capacity	of	a	conductor.	To	reflect	
temperature	extremes,	two	ambient	air	temperatures	are	often	assumed:	summer	noon,	35	°C,	
and	winter	night,	10	°C.	These	operating	conditions,	together	with	an	assumed	wind	speed,	are	
used	to	derive	maximum	and	minimum	thermal	capabilities	for	overhead	lines	on	a	summer	day	
and	a	winter	night,	respectively	[23].	To	determine	the	maximum	steady-state	current	carrying	
capacity	of	overhead	conductors	at	specific	ambient	temperature	conditions,	the	installation	
characteristics	such	as	height	and	span	between	supports	are	also	required,	to	ensure	that	a	
conductor	has	adequate	safety	and	structural	clearances	[24,25].		

The	design	and	construction	of	underground	cables	varies	significantly.	For	example,	single-core	
and	three-core	cables	are	available	with	aluminium	or	copper	conducting	materials,	which	are	
constructed	for	various	fault	levels	[26].	Underground	cables	are	often	directly	buried	(with	or	
without	thermal	backfill);	they	may	also	be	placed	in	conduits.	The	method	in	which	specific	types	
of	underground	cables	are	buried,	together	with	preceding	load	variations,	informs	calculations	
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that	determine	the	maximum	current	carrying	capacity	of	specific	underground	cables,	which	is	
described	in	more	detail	in	IEC	standards	60853-1	and	60287-1-1	[27,	28].	

The	current	carrying	capacity	of	transformers	connected	to	the	electrical	grid	depends	on	
preceding	load	variations	as	well	as	the	cooling	systems	implemented	[29].	In	determining	the	
current	carrying	capacity	of	distribution	transformers	connected	to	MV	feeders,	daily	load	profiles	
(Figure	2)	are	often	considered	by	distribution	operators.	Figure	2	illustrates	eight	normalised	daily	
load	cycles	commonly	seen	at	distribution	transformers.	The	load	cycle	or	cycles	illustrate:	

• an	industrial	or	commercial	load	cycle	(top	left,	a)	

• mixed	industrial	or	residential	load	cycles	(bottom	left	to	middle,	e-g)	

• domestic	load	cycles	with	or	without	water	heating	(top	middle	to	right,	b-d)	

• a	continuous	load	cycle	(bottom	right,	h).	

	
Figure	2:	Typical	daily	load	profiles	as	seen	by	a	distribution	transformer	

The	x-axis	of	each	graph	denotes	the	hours	in	a	day,	and	the	y-axis	denotes	the	normalised	load		
Source:	Personal	communication	with	Ausgrid	

In	Figure	2(h),	the	continuous	load	cycle	has	a	continuous	rating;	however,	the	remaining	load	
cycles	in	the	figure	permit	a	higher	cyclic	rating	to	be	applied	to	a	transformer.	That	is,	a	daily	load	
cycle	that	leads	to	a	transformer	cooling	for	a	period	of	time	results	in	a	higher	short-term	(cyclic)	
rating.		

In	Table	2,	continuous	ratings	are	represented	by	a	factor	of	1;	the	table	also	presents	higher	cyclic	
rating	factors	that	are	often	applied	to	distribution	transformers.	For	example,	if	a	distribution	
transformer	has	a	continuous	rating	of	400	kVA,	then	a	cyclic	rating	of	588	kVA	may	be	applied	to	
the	transformer	in	cases	where	the	daily	load	cycle	is	defined	by	the	domestic	case	presented	in	
Figure	2(b-d).	



	

Table	2:	Indicative	cyclic	rating	factors	for	a	single	distribution	transformer	substation		

Load cycle Cyclic rating factor for a 
single transformer  

Description 

Industrial    1.14 

 

Industrial 
Mixed predominantly industrial 
Commercial 

Mixed 1.38 Mixed predominantly domestic 

Domestic 1.47 Domestic little hot water load 

Domestic much hot water load 

Continuous 1 Mixed predominantly domestic 

Source:	Personal	communication	with	Ausgrid	

Residential	load	cycles	as	seen	by	distribution	transformers	may	also	vary	from	summer	to	winter.	
Figure	3(a),	which	was	generated	from	residential	data	provided	in	[30],	shows	that	in	summer	the	
residential	load	profile	increases	throughout	the	day,	peaking	in	the	early	evening.	Figure	3(b)	
shows	that	in	winter	there	is	a	morning	and	an	evening	peak.	Consequently,	residential	cyclic	
rating	factors	applied	in	the	electrical	grid	potentially	vary	from	summer	to	winter.	

	

	

Figure	3:	Aggregate	residential	load	from	300	customers	in	New	South	Wales	

NSW,	New	South	Wales	
Sources:	[30,31]	
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5.1.4 How	often	do	peak	loads	occur?	

Peak	loads	on	MV/LV	distribution	transformers	may	or	may	not	align	with	peak	loads	in	the	
upstream	feeder,	zone	substation,	and	the	transmission	or	subtransmission	network.	A	domestic	
load	cycle	at	an	MV/LV	transformer	potentially	leads	to	a	peak	load	driven	by	high	ambient	
temperatures	on	weekdays	or	weekends.	In	the	upstream	feeder,	a	mixed	commercial–domestic	
load	cycle	potentially	leads	to	a	peak	load	driven	by	high	ambient	temperatures	on	weekdays	
rather	than	weekends.	An	example	is	given	in	Figure	4,	wherein	residential	loads	from	
300	customers	in	New	South	Wales,	Australia,	are	aggregated	over	the	3-year	period	from	July	
2010	to	June	2013	[30,31].	Figure	4(a)	shows	a	single	day	where	the	aggregate	residential	load	
exceeds	800	kW.	This	peak	load	occurred	on	Sunday	6	February	2011,	during	a	heatwave	in	
Sydney	[32].	In	contrast,	during	2011,	the	peak	demand	across	New	South	Wales	occurred	on	
Tuesday	1	February	2011	[33].	Peak	loads	that	lead	to	capacity	constraints	within	the	distribution	
network	are	investigated	by	utilities	on	a	case-by-case	basis.		

The	frequency	of	peak	load	events	varies	at	different	locations	in	the	distribution	network.	
However,	ambient	temperature	is	typically	a	good	indication	of	the	potential	for	a	peak	load	
event.	In	particular,	a	very	low	ambient	temperature	or	a	very	high	ambient	temperature	on	a	
weekday	outside	of	a	school	holiday	or	a	public	holiday	commonly	coincides	with	peak	load	events	
in	parts	of	the	distribution	or	transmission	network.	Thus,	Figure	4(b)	shows	that	the	aggregate	
residential	load	exceeds	400	kW	approximately	2%	of	the	time,	and	Figure	4(a)	shows	that	the	
aggregate	residential	load	exceeds	400	kW	in	both	summer	and	winter.	Cases	where	the	load	is	
zero	in	Figure	4	correspond	to	changes	in	daylight	saving	time,	rather	than	events	where	no	load	is	
consumed	[31].	



	

	

Figure	4:	Aggregate	residential	load	from	300	customers	in	New	South	Wales	from	1	July	2010	to	30	June	2013	

NSW,	New	South	Wales	
Sources:	[30,31]	

The	duration	of	a	peak	load	event	–	together	with	ambient	or	conductor	or	transformer	winding	
temperatures	–	assists	in	calculations	of	the	throughput	capacity	of	infrastructure	in	the	electricity	
grid.	Peak	loads	that	occur	in	summer	rather	than	winter,	over	a	number	of	hours,	are	more	likely	
to	lead	to	capacity	constraints	requiring	remediation	in	the	electricity	grid.		

5.1.5 What	is	the	effect	of	significant	reverse	power	flow	from	residential	PV?	

Traditionally,	distribution	networks	and	their	voltage	control	and	protection	systems	have	been	
designed	and	constructed	in	a	radial	fashion,	to	facilitate	unidirectional	power	flow.	The	primary	
purpose	of	network	protection	equipment	is	to	disconnect	faulty	network	components	in	order	to	
prevent	damage	to	plant	and	ensure	safety	to	the	public	and	network	personnel.	In	cases	with	
light	feeder	loading	or	high	distributed	generation	(DG)	penetration,	the	distribution	network	may	
need	to	be	able	to	accommodate	reversed	(negative)	power	flow,	which	could	interfere	with	
traditional	voltage	and	protection	system	designs	[34].	This	is	particularly	important	in	cases	
where	MV	protection	systems	have	been	designed	with	directional	relays	that	may	now	see	power	
flow	in	the	opposite	direction	[35,	36].		

Figure	5	presents	aggregate	residential	demand	from	300	customers	located	in	New	South	Wales,	
generated	from	data	proved	by	the	distributor	Ausgrid	[30].	If	these	300	customers	were	located	
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in	close	proximity	to	each	other,	we	would	see	significant	reverse	power	flow	in	the	distribution	
grid,	as	in	Figure	5	(a).	Figure	5	(b)	shows	that	this	reverse	power	flow	would	occur	about	20%	of	
the	time.	The	reverse	power	flow	would	lead	to	investigation	of	the	effectiveness	of	existing	
voltage	control	protection	schemes,	with	replacement	schemes	potentially	leading	to	significant	
costs	for	an	electrical	distributor	[37].		

	
Figure	5:	Aggregate	residential	demand	(load	minus	PV	generation)	from	1	July	2010	to	30	June	2013	for	300	
customers	in	New	South	Wales		

NSW,	New	South	Wales;	PV,	photovoltaic	
Sources:	[30,31]	

5.1.6 Case	study:	batteries	and	network	cost	reduction	

The	introduction	of	high	Distributed	Generation	(DG)	penetrations	together	with	battery	storage	
brings	opportunities	to	implement	more	adaptive	design	techniques	(e.g.	islanding)	to	potentially	
further	improve	the	reliability	performance	of	distribution	networks	(cf.	Section	5.1.1).	Moreover,	
battery	storage	co-located	with	DG	potentially	provides	opportunities	to	improve	the	quality	of	
the	voltage	supplied	to	customers	[31,	34,	38–40],	together	with	reducing	demand	that	leads	to	
capacity	constraints	within	the	electricity	grid	(see	Sections	5.1.3,	5.1.4)	[41].		

Charging	battery	storage	co-located	with	DG	when	significant	reverse	power	flow	presents	in	the	
electrical	grid	may	also	lead	to	cost	savings	for	power	system	operators.	For	example,	existing	
voltage	control	or	protection	schemes	may	continue	to	operate	as	traditionally	designed	when	



	

excess	generation	from	rooftop	solar	PV	is	stored	in	a	battery	(see	Section	5.1.5).	In	contrast,	end-
of-line	voltage	measurements	and	associated	communication	infrastructure	may	be	required	by	
distributors	when	significant	reverse	power	flow	is	present	in	the	distribution	grid	in	order	to	
detect	and	mitigate	either	of	the	following:	

• voltages	rise	outside	Australian	Standard	AS	60038	[2]	
• faults	at	the	end	of	distribution	feeders	[37].	

DNSPs	will	typically	incur	costs	associated	with	these	additional	measurements,	communication	
infrastructure,	and	associated	control	and	protection	schemes.	

Discharging	battery	storage	to	reduce	peaks	in	electrical	demand	across	the	grid	may	defer	capital	
expenditure	in	the	distribution	or	transmission	grid.	In	cases	where	residential-scale	battery	
storage	is	charged	and	discharged	in	order	to	smooth	load	cycle	peaks	and	valleys	across	the	state,	
steady-state	ratings	applied	in	the	distribution	grid	may	be	reduced	from	a	cyclic	to	a	continuous	
rating	(see	Section	5.1.3).	Case-by-case	assessments	of	a	distribution	grid	would	therefore	be	
required	to	determine	the	impact	of	potential	rating	reductions.	Moreover,	it	is	currently	not	
possible	to	proscribe	the	optimal	load	profile	for	a	distribution	grid,	because	factors	such	as	
temperature,	wind	speed,	overhead	line	construction	(including	high	and	span	between	
conductors),	cable	arrangements	(including	thermal	backfill	properties),	and	transformer	top	oil	
temperatures	are	required	to	determine	the	existing	capacity	of	a	distribution	grid	at	a	point	in	
time	(as	discussed	in	Section	5.1.3)	[42].	

In	[41],	two	approaches	to	charging	and	discharging	residential	battery	storage	co-located	with	
solar	PV	are	proposed.	Each	approach	seeks	to	limit	peak	demand	and	significant	reverse	power	
flow	across	a	point	(e.g.	a	zone	substation)	in	the	electricity	power	grid,	in	addition	to	enabling	
residential	customers	to	accrue	savings	from	battery	charge	or	discharge	schedules.	Some	of	the	
results	presented	in	[41]	are	considered	below.		

Figure	6	shows	daily	peaks	and	minimums	in	aggregate	residential	demand	from	112	customers	
with	a	gross	feed-in	meter	recording	solar	PV	generation.	Each	customer	is	located	in	New	South	
Wales,	and	was	identified	with	the	data	obtained	during	the	Smart	Grid	Smart	City	(SGSC)	trial	
[43].	The	figure	shows	7	days	in	a	year	when	residential	peak	demand	exceeds	210	kW,	a	
representative	continuous	rating	for	the	purpose	of	this	case	study.	It	also	shows	9	days	in	a	year	
when	reverse	power	flow	exceeds	100	kW	in	magnitude,	which	potentially	leads	to	voltage	
excursions	outside	power	quality	standards.		
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Figure	6:	Aggregate	residential	demand	for	112	customers	in	New	South	Wales,	each	with	solar	PV	

PV,	photovoltaic;	SGSC,	Smart	Grid	Smart	City	
Source:	Residential	load	and	solar	PV	generation	data	that	was	collected	from	1	January	2012	to	31	December	2012	as	part	of	the	
federally	funded	SGSC	[41].	

Two	approaches	to	charging	and	discharging	battery	storage	at	each	household	are	proposed	[41]	
(and	are	included	in	Chapter	5	of	this	thesis).	The	objective	is	to	reduce	the	aggregate	peak	load	to	
210	kW	together	with	limiting	reverse	power	flow	to	100	kW	in	magnitude	(e.g.	a	reverse	power	
flow	constraint	of	–100	kW	is	considered),	in	addition	to	permitting	customers	to	accrue	
operational	savings	as	defined	in	[40,	41].	The	results	are	shown	in	Figure	7,	wherein	Figure	7(a)	
presents	the	results	of	the	localised	approach	and	Figure	7(b)	presents	the	results	of	the	
centralised	approach.		

In	the	localised	approach,	the	energy	management	system	of	each	household	incorporates	simple	
directives	from	the	utility	(in	the	form	of	three	weights)	together	with	time-of-use	(TOU)	pricing	
signals	when	determining	day-ahead	battery	charge	and	discharge	schedules.	The	three	weights	
balance	three	objectives	included	in	the	residential	energy	management	system:	increase	profits,	
reduce	reverse	power	flow,	and	reduce	peak	load.	Using	the	localised	approach,	Figure	7(a)	shows	
just	2	days	in	the	year	where	peak	demand	exceeds	210	kW,	and	on	all	days	reverse	power	flow	is	
less	than	100	kW	in	magnitude.	In	the	centralised	approach,	the	utility	directly	specifies	the	charge	
and	discharge	schedule	of	each	residential	battery,	which	provides	improved	performance	in	peak	
load	reduction	across	the	entire	year,	as	shown	in	Figure	7(b).	Further,	in	the	centralised	
approach,	TOU	pricing	is	included	in	the	objective	function,	which	leads	to	each	customer	accruing	
operational	savings	from	the	utility-prescribed	battery	schedule.		



	

	 	

Figure	7:	Aggregate	residential	demand	for	112	customers	in	New	South	Wales	when	each	customer	installs	a	
10	kWh	battery	co-located	with	solar	PV		

PV,	photovoltaic;	SGSC,	Smart	Grid	Smart	City	
Source:	Residential	load	and	solar	PV	generation	data	for	each	of	the	112	customers	was	collected	from	1	January	2012	to	31	
December	2012	as	part	of	the	federally	funded	SGSC,	and	was	used	to	generate	this	figure.	The	centralised	and	localised	approach	
to	scheduling	the	battery	of	each	customer	is	described	in	more	detail	in	[41].	

A	centralised	approach	to	charging	and	discharging	residential	battery	storage	co-located	with	
solar	PV,	similar	to	that	proposed	in	[41],	may	potentially	be	used	by	distribution	and	transmission	
operators	when	there	are	capacity	constraints	in	the	electrical	power	grid.	Such	an	approach	
demonstrates	potential	in	deferring	(indefinitely)	costly	investment	in	grid	re-enforcements	driven	
by	peak	demand	or	power	quality	excursions	outside	prescribed	network	limits	(see	Section	5.1.2).	
However,	we	cannot	say	whether	the	benefits	of	centrally	controlling	battery	storage	are	always	
economically	viable,	given	that	the	costs	associated	with	increasing	the	electrical	network	capacity	
are	case	specific,	as	are	the	costs	associated	with	alternative	(demand	management)	approaches	
to	peak	demand	reduction	or	power	quality	improvements,	as	outlined	in	[8–22].	

5.1.7 Case	study:	batteries	and	demand	management	

This	case	study	examines	the	viability	of	battery	storage	as	a	demand	management	strategy	for	
transmission	network	operators.	To	better	understand	the	cost-effectiveness	of	large-scale,	grid-
connected	battery	banks	we	consider	three	sites	in	close	proximity	to	both	transmission	and	
subtransmission	assets.	We	additionally	consider	a	scenario	where	a	peak	demand	reduction	of	
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25	MW	is	required	in	2020	on	the	transmission	network	that	passes	through	Eastern	Creek,	New	
South	Wales.	

For	the	purpose	of	this	case	study,	we	initially	identified	cities	that	are	very	close	to	large	load	
centres,	in	addition	to	both	transmission	and	subtransmission	assets	within	the	NEM	[44–47].	We	
further	restrict	our	search	to	cities	that	are	not	located	in	central	business	district	(CBD)	locations,	
where	the	cost	of	land	associated	with	installing	a	very	large	battery	bank	together	with	
underground	construction	costs	(see	Table	1)	are	presumed	to	be	prohibitive.	Figure	8	presents	an	
overview	of	all	cities	considered,	wherein	three	cities	in	close	proximity	to	each	other	are	further	
considered	based	on	our	selection	criteria.	Based	on	observations	in	Google	Maps,	the	case	study	
substation	was	located	in	one	of	the	selected	cities,	namely	Eastern	Creek	in	New	South	Wales.		



	

	

Figure	8:	Each	blue	dot	represents	a	city,	town	or	place	considered	in	this	case	study.	The	red	lines	represent	
transmission	and	subtransmission	assets	within	the	National	Electricity	Market	

Sources:	[44–47]	
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With	the	demand	management	study	in	[48]	considered	as	background,	we	propose	the	following	
hypothetical	demand	management	case	study,	where	we	assume	the	following:	

• a	25	MW	reduction	in	peak	demand	is	required	in	2020	on	the	transmission	network	in	
Eastern	Creek,	New	South	Wales	

• Eastern	Creek	has	a	330	kV/132	kV	substation	and	a	132	kV/66	kV	substation,	each	with	a	
spare	bay	for	connecting	330	kV,	132	kV	or	66	kV,	respectively	

• the	peak	demand	on	the	Eastern	Creek	transmission	network	typically	occurs	on	hot	summer	
weekdays	between	about	3	pm	and	6	pm,	on	a	few	days	in	the	year,	and	has	a	typical	
duration	of	3	hours	

• the	expected	cost	to	increase	the	capacity	of	the	330	kV	network	(by	25	MW)	in	Eastern	Creek	
exceeds	$200	million	

• three	suitable	sites	for	a	50	MW/75	MWh	battery	bank	have	been	identified	close	to	the	
Eastern	Creek	66	kV,	132	kV	and	330	kV	networks;	each	site	covers	0.6	ha	of	land	

• the	distance	from	each	of	the	three	sites	to	a	respective	substation	in	Eastern	Creek	is	as	
presented	in	Table	3;	these	distances	were	calculated	using	data	provided	in	[44–46].	

Table	3:	Assumed	distances	(km)	from	each	site	to	a	330	kW/132	kV	or	a	132	kV/66	kV	substation	in	Eastern	Creek		

Site location 66 kV 132 kV 330 kV 

Eastern Creek, NSW 1.96 1.83 1.94 

Erskine Park, NSW 2.58 0.29 0.19 

Horsley Park, NSW 2.82 0.02 2.86 

NSW,	New	South	Wales	

Table	4	combines	the	distances	in	Table	3	with	the	generic	construction	and	connection	costs	in	
Table	1	to	show	the	cost	of	connecting	the	50	MW/75	MWh	battery	bank	to	different	voltage	
levels.	It	shows	that	a	connection	to	the	66	kV	in	Eastern	Creek	costs	significantly	less	than	a	
connection	to	the	132	kV	and	330	kV	networks	in	Eastern	Creek.	

	 	



	

	

Table	4:	Assumed	cost	to	connect	a	battery	bank	from	each	site	to	a	respective	subtransmission	or	transmission	
substation	in	Eastern	Creek		

Site location 66 kV 132 kV 330 kV 

Eastern Creek, NSW $7.08 m $11.37 m $33.49 m 

Erskine Park, NSW $7.42 m $10.21 m $30.34 m 

Horsley Park, NSW $7.55 m $10.02 m $35.15 m 

NSW,	New	South	Wales	

Table	5	shows	projected	minimum	and	maximum	costs	of	a	50	MW/75	MWh	battery	bank	
(including	inverter	and	land	costs).	Specifically,	it	shows	the	costs	of	an	Li-ion–based	battery	bank	
and	a	flow	battery	bank	in	the	years	2020	and	2035.	The	table	shows	a	significant	reduction	in	the	
cost	of	both	battery	technologies	over	the	15-year	period,	and	that	the	cost	of	Li-ion	technology	is	
significantly	less	than	the	cost	of	flow-based	technology	in	both	2020	and	2035.		

Table	5:	Assumed	cost	of	a	50	MW/75	MWh	battery	bank,	including	inverter	and	land	costs	of	0.6	hectares	(please	
refer	to	the	full	report	for	more	details)	

Year Li-ion  
minimum 

Li-ion maximum Flow battery 
minimum 

Flow battery  
maximum 

2020 $35.5 m $91 m $100.5 m $206.5 m 

2035 $14.5 m $46 m $30.5 m $74.5 m 

Li,	lithium	

Table	6	shows	the	projected	total	cost	of	a	50	MW/75	MWh	battery	bank	connected	to	a	spare	
66	kV	feeder	bay	in	an	Eastern	Creek	subtransmission	substation	for	the	year	2020.	The	projected	
costs	include	a	step-down	transformer	from	66	kV	to	11	kV	at	each	of	the	three	sites.	The	table	
shows	that	a	Li-ion	50	MW/75	MWh	battery	bank	would	potentially	provide	cost	savings	to	a	
transmission	operator	in	cases	where	a	battery	bank	connection	in	close	proximity	to	a	66	kV	
feeder	bay	was	available.	However,	in	2020,	a	flow-based	battery	bank	of	50	MW/75	MWh	could	
potentially	cost	the	transmission	operator	more	than	$200	m	at	each	of	the	three	site	locations,	as	
shown	by	the	maximum	costs	in	Table	6.		
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Table	6:	Assumed	total	cost	of	installing	and	grid-connecting	a	50	MW/75	MWh	battery	bank,	including	land	costs	
of	0.6	ha,	a	DC/AC	converter	and	an	associated	step-up	transformer		

Site location Year Li-ion minimum Li-ion 
maximum 

Flow battery 
minimum 

Flow battery 
maximum 

Eastern Creek, 
NSW 

66 kV 

2020 

 

$53 m $108 m $118 m $224 m 

Erskine Park, 
NSW 

66 kV 

2020 

 

$54 m $109 m $119 m $224 m 

Horsley Park, 
NSW 

66 kV 

2020 

 

$53 m $109 m $118 m $224 m 

DC/AC,	direct	current/alternating	current;	Li,	lithium;	NSW,	New	South	Wales	

The	results	of	this	case	study	confirm	that	battery	storage	may	become	a	viable	demand	
management	strategy	for	operators	of	transmission	or	subtransmission	networks.	Also,	the	costs	
associated	with	Li-ion	battery	technology	are	rapidly	decreasing;	hence,	managing	peak	demand	in	
both	transmission	and	distribution	networks	in	the	near	future	will	become	increasingly	cost-
effective	with	battery	storage.	However,	costs	associated	with	land	in	CBD	locations,	together	with	
connection	costs	at	transmission	or	subtransmission	voltages,	are	significant.	Therefore,	a	case-by-
case	demand	management	assessment	is	required	to	determine	the	cost-effectiveness	of	large-
scale,	grid-connected	battery	banks	at	different	network	locations.	This	finding	is	not	consistent	
with	the	demand	management	study	in	[48],	since	battery	costs	in	2009	were	more	than	
$2000/kVA.	

5.2 Commercial	or	industrial	customers	

5.2.2 Industrial	Customers:	Reducing	the	cost	of	connection	

Connection	costs	for	large	industrial-sized	customers	depend	on	a	number	of	factors,	including	the	
distance	to	nearby	transmission	or	subtransmission	assets,	the	proposed	use	of	those	assets,	and	
any	capacity	constraints	requiring	remediation	to	facilitate	the	proposed	connection.	Therefore,	a	
large	industrial	customer	may	seek	to	use	battery	storage	to	alleviate	any	capacity	constraints	
restricting	or	to	decrease	the	cost	of	the	proposed	new	connection.		

This	section	explores	whether	it	is	economically	viable	to	install	battery	storage	to	reduce	the	new	
connection	costs	of	a	large	industrial-sized	customer.	The	economic	proposition	is	much	the	same	
whether	that	customer	is	a	load	or	a	small	generation	source.	Given	the	availability	of	locational	
data	in	[50],	we	have	chosen	to	assume	a	small	generation	source.		



	

We	identified	cities	that	are	close	to	both	transmission	and	subtransmission	assets	within	the	
NEM,	with	data	obtained	from	[44–47].	We	further	restricted	our	search	to	cities	with	(or	
proposals	for)	a	bagasse-fired	plant,1	wind	farms	or	solars	farms,	as	outlined	in	[50,	51].	See	Figure	
8	for	an	overview	of	all	cities	considered,	with	further	consideration	of	three	cities	in	either	
Queensland	or	Victoria,	based	on	our	selection	criteria.		

The	three	cities	considered	with	respect	to	reducing	the	cost	of	connecting	a	30	MW	wind	farm	or	
solar	farm	to	the	NEM	were	Beaconsfield,	Queensland;	Invermay	Park,	Victoria;	and	St	Helens	
Plains,	Victoria.	We	assumed	that	power	quality	or	capacity	constraints	in	the	subtransmission	
network	would	restrict	the	connection	of	each	wind	or	solar	farm,	so	we	further	assumed	that:	

• the	maximum	output	of	the	wind	or	solar	farm	in	Queensland	would	be	limited	to	20	MW	in	
order	to	connect	to	the	132	kV	network	(we	therefore	assumed	a	30	MW	connection	to	the	
330	kV	network)	

• the	maximum	output	of	the	wind	or	solar	farm	at	each	site	in	Victoria	would	be	limited	to	
20	MW	in	order	to	connect	to	the	66	kV	network	(we	therefore	assumed	a	30	MW	connection	
to	the	220	kV	network	for	each	site).	

With	the	above	as	background,	we	investigated	the	differences	in	connection	costs	from	the	
subtransmission	to	the	transmission	network.	From	these	cost	differences,	we	considered	the	
break-even	cost	associated	with	installing	battery	storage	at	each	site	to	limit	the	maximum	
output	of	the	wind	or	solar	farm	to	20	MW.	Table	7	presents	assumed	costs	to	connect	a	solar	or	
wind	farm	to	the	electrical	grid	at	a	particular	voltage.	These	costs	assume	a	direct	(otherwise	
known	as	a	teed)	connection	to	a	nearby	overhead	conductor,	and	include	protection	and	control	
cost.	They	do	not	consider	customer-specific	step-down	transformers	that	would	be	located	on	
the	generator’s	site.	The	costs	in	Table	7	are	estimated	from	the	generic	overhead	construction	
costs	and	connection	costs	assumed	in	Table	1.	

Table	7:	Assumed	costs	to	connect	a	wind	or	solar	farm	to	a	subtransmission	or	transmission	substation	

City 66 kV 132 kV 220 kV 330 kV 

Beaconsfield, Qld – $10.5 m – $32 m 

Invermay Park, Vic $6.2 m – $23 m – 

St Helens Plains, Vic $6.2 m – $27 m – 

Qld,	Queensland;	Vic,	Victoria	

Table	7	shows	that	a	battery	storage	system	that	limits	the	maximum	output	of	the	wind	or	solar	
farm	to	20	MW	would	need	to	cost	less	than:		

• $21.5	m	to	facilitate	a	connection	to	the	132	kV	network	in	Beaconsfield,	Queensland	

• $16.8	m	to	facilitate	a	connection	to	the	66	kV	network	in	Invermay	Park,	Victoria	
																																																													

	
1	Bagasse	is	the	fibrous	material	that	is	left	after	sugarcane	or	sorghum	stalks	are	crushed	to	extract	their	juice	
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• $20.8	m	to	facilitate	a	connection	to	the	66	kV	network	in	St	Helens	Plains,	Victoria.		

Therefore,	battery	storage	co-located	with	large-scale	solar	PV	or	wind	farms	potentially	facilitates	
a	reduction	in	the	cost	to	connect	to	the	electrical	power	grid.	However,	realising	these	potential	
savings	will	probably	always	require	a	detailed	case-by-case	assessment	given	the	diversity	of	
loads	and	generation	profiles	of	each	large	industrial-sized	customer.		
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An Australian distribution
network dataset

Chapter 1 investigated the economic viability of grid-connected battery storage for Australian

policy makers. Chapter 1 also introduced two optimization-based approaches to scheduling resi-

dential battery storage for the purpose of peak load reduction in a distribution grid (cf. Chapter 1,

Figure 7). In Part 3 of this thesis we formalize these two battery scheduling approaches.

Chapter 2 consists of the paper titled Residential load and rooftop PV generation: an Australian

distribution network dataset, that reports a publicly available dataset of historical load and PV

generation for 300 de-identified residential customers in an Australian distribution network. One of

the key contributions of this paper is a detailed description of the dataset highlighting diversity in

individual residential load and generation profiles, followed by an approach to identify and excise

anomalous records (e.g. due to inverter failure). This dataset is used to evaluate our proposed

battery scheduling algorithms in the remaining chapters of the thesis. Chapter 2 also introduces

the financial policy of net metering that is defined later in Part 2.
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ABSTRACT
Despite the rapid uptake of small-scale solar photovoltaic (PV) systems in
recent years, public availability of generation and load data at the
household level remains very limited. Moreover, such data are typically
measured using bi-directional meters recording only PV generation in
excess of residential load rather than recording generation and load
separately. In this paper, we report a publicly available dataset
consisting of load and rooftop PV generation for 300 de-identified
residential customers in an Australian distribution network, with load
centres covering metropolitan Sydney and surrounding regional areas.
The dataset spans a 3-year period, with separately reported
measurements of load and PV generation at 30-min intervals. Following
a detailed description of the dataset, we identify several means by
which anomalous records (e.g. due to inverter failure) are identified and
excised. With the resulting ‘clean’ dataset, we identify key customer-
specific and aggregated characteristics of rooftop PV generation and
residential load.
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1. Introduction

In many countries, electricity distribution operators have installed metering equipment to separ-
ately record small-scale (‘rooftop’) photovoltaic (PV) generation and residential load. To incenti-
vise the installation of rooftop PV the New South Wales (NSW) state government in Australia
introduced the Solar Bonus Scheme (NSW Government 2010) on 1 January 2010, wherein custo-
mers were offered generous feed-in tariffs for grid-connected PV generation. As a consequence, the
NSW-based utility Ausgrid installed additional metering infrastructure at premises of each eligible
customer to enable the recording of power flows from PV inverters for the purpose of calculating
feed-in tariff payments.

The financial policy of ‘net metering’ widely adopted in the USA also incentivises grid-connected
rooftop PV generation (Black 2004; Campoccia et al. 2009; Darghouth, Barbose, and Wiser 2014;
Ratnam, Weller, and Kellett 2015a,b). To offer the financial policy of net metering, an electricity
distributor typically installs a bi-directional meter at the premises of each eligible customer. The
bi-directional meter records any PV generation in excess of residential load for the purpose of
calculating net metering credits. The bi-directional meter also records any load drawn from the elec-
tricity grid (i.e. load not met by the rooftop PV generator) for the purpose of calculating net metering
bills (Black 2004; Campoccia et al. 2009; Ratnam,Weller, and Kellett 2015b). In contrast, implement-
ing the feed-in tariff proposed under the NSW Solar Bonus Scheme requires two meters to be
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installed at residential premises. A dedicated meter recording solar generation direct from the PV
inverter and a separate meter recording residential load are installed at premises for the purpose
of subsidising and billing customers, respectively. A consequence of the NSW Solar Bonus
Scheme is, therefore, more complete PV generation data available for collection.

Datasets with separate (more complete) records of load and PV generation are useful in the area
of forecasting supply and demand in the electricity grid. To ensure generation supply meets electri-
city demand and that the power supplied to customers is of a high quality, network planners, and
operators rely on forecasts of both system load and generation – including distributed PV generation
(Holttinen et al. 2013). However, accurate predictions of fluctuations in day-ahead PV generation at
a system level is an active research topic (Hart, Stoutenburg, and Jacobson 2012; Holttinen et al.
2013; Chow, Belongie, and Kleissl 2015). For example, fluctuations in aggregate residential PV gen-
eration as observed in an upstream feeder typically arise from moving cloud cover on timescales ran-
ging from minutes to hours (Hart, Stoutenburg, and Jacobson 2012; Chow, Belongie, and Kleissl
2015). In contrast, fluctuations in aggregate load as observed in an upstream feeder are fairly slow
and predictable for the day-ahead (Hart, Stoutenburg, and Jacobson 2012). Historical datasets
with separately reported measurements of PV generation potentially assist in the development of
forecasting algorithms that predict PV generation from prior PV measurements.

The recent dramatic increase in grid-connected solar PV has been driven by the decreasing cost of
PV panels (Bazilian et al. 2013; Lang, Gloerfeld, and Girod 2015) together with generous feed-in tar-
iffs and/or net metering polices (Ogimoto et al. 2013; Moosavian et al. 2013; von Appen et al. 2013).
In Australia, Germany, and the USA, net metering policies and/or feed-in tariffs have been available
to residents in recent years. As a consequence, in Australia, there was a 480% increase in solar PV
installations in a single year from 2009 to 2010, of which 99% was grid-connected (Moosavian et al.
2013). In the USA, there is more than 16 GW of installed solar PV (Kroposki and Mather 2015), up
from 0.8 GW in 2010 (Kroposki, Margolis, and Lynn 2011). PV plant installations in Germany
exceed 1.2 million, and as of September 2012, peak PV capacity reached 31 GW with about 70%
of this capacity being connected to the low voltage grid (von Appen et al. 2013).

The uptake of residential solar PV in NSW Australia was greater than expected under the gener-
ous Solar Bonus Scheme (Independent Pricing and Regulatory Tribunal 2012). In response, the NSW
state government initiated a review of feed-in tariff prices to manage the cost of the Scheme together
with encouraging further adoption of renewable energy in NSW (Ausgrid 2014e; Independent Pri-
cing and Regulatory Tribunal 2012). As a consequence of this review, Ausgrid publicly released a
small sample of PV data collected for feed-in tariff payments (Ausgrid 2014e). More specifically,
in 2014 Ausgrid publicly released residential PV generation and load data for a subset of 300 (de-
identified) customers spanning a 3-year period from 1 July 2010. Other utilities offering feed-in tar-
iffs potentially store data similar to that released by Ausgrid (Nykamp et al. 2013; Independent Pri-
cing and Regulatory Tribunal 2012). Furthermore, smart grid deployments in some countries have
also provided opportunities for data collection relating to solar PV generation and/or residential load
(Rhodes et al. 2014; Yang et al. 2014; Quilumba et al. 2015; Pereira et al. 2015). However, the public
availability and analyses of these load and generation datasets in the open literature is very limited.
The Ausgrid dataset, therefore, is a valuable resource for researchers and policy-makers alike.

In this paper, we present a detailed description of the Ausgrid dataset in Section 2 with a view to
facilitating use of the dataset by interested researchers.1 The Ausgrid dataset has already been used in
several research publications investigating co-locating battery storage with solar PV (Ratnam,
Weller, and Kellett 2013; Keerthisinghe, Verbic, and Chapman 2014a,b; Khalilpour and Vassallo
2015; Braun et al. 2015; Worthmann et al. 2015; Ratnam, Weller, and Kellett 2015a,b), and this
paper aims to serve as an archival reference for future research. In Section 3, we describe various
anomalies that arise in the dataset. We remove customers with any anomalous data, leaving a
‘clean dataset’ consisting of reliable data for 54 customers for the entire 3 years covered by the data-
set. It is worth noting that, for any given day, significantly more than the 54 customers in the clean
dataset will have reliable data.2 An analysis of the clean dataset is presented in Section 4.
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2. Ausgrid dataset

The Ausgrid distribution network covers 22,275 km2 and includes load centres in Sydney and
regional NSW as depicted in Figure 1. The Ausgrid distribution network supplies in excess of
25,523 GWh of electricity annually to more than 1.64 million customers (2013/2014 financial
year), comprised of over 1.4 million residential customers together with major industries including
mining, manufacturing, and agriculture (Ausgrid 2014a). From the Ausgrid customer base, a subset
of 300 residential customers were chosen as follows:

(1) Ausgrid identified residential customers with a separate meter that recorded PV generation directly
from the PV inverter (i.e. customers receiving a feed-in tariff) over the period 1 July 2010–30 June
2013. Approximately 15,000 customers were included in this group (Ausgrid 2014b).

(2) From this group of around 15,000 customers, Ausgrid removed customers in the top or bottom
10% of annual household energy consumption (in kWh) or PV production (in kWh).

Figure 1. Outline of the Ausgrid distribution network that covers 22,275 km2 and includes load centres in Sydney and regional
NSW. Shaded regions within the Ausgrid network correspond to postcode areas included in the dataset of 300 customers (ABS
2006). Map data: ©2015 Google
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(3) From the remaining residential customers, 300 were selected at random by Ausgrid.
To protect the privacy of these 300 residential customers, all personally identifiable information

was removed from the Ausgrid dataset (Ausgrid 2014d). Consequently, the postcode of each custo-
mer provides the only context of geographical spread included in the Ausgrid dataset. In total, there
are 100 unique postcodes in the Ausgrid dataset. The shaded regions in Figure 1 depict these 100
postcode areas within the Ausgrid boundary. Information regarding the relationship between
socio-economic or demographic characteristics in the context of solar PV uptake in different
areas of Australia is provided in ACIL Allen Consulting (2013).

By default, the time format in the Ausgrid dataset is Australian Eastern Standard Time (AEST),
though for the summer period (approximately October–April) Australian Eastern Daylight Savings
Time (AEDT) is used. For each of the 1096 days in the Ausgrid dataset (3 years from 1 July 2010),
load and generation data were recorded at intervals ofD = 0.5 h duration. In what follows, we introduce
terminology provided by Ausgrid in Ausgrid (2014e) that describes the daily load and generation data
recorded against each of the 48 intervals of 0.5 h duration. We also introduce additional terminology,
where appropriate, with a view of facilitating use of the Ausgrid dataset by interested researchers.

2.1. Residential load and generation data

The Ausgrid dataset includes information on the installed capacity for each of the 300 residential-
scale rooftop solar PV units (in kilowatt-peak kWp). The solar PV generation data for each customer
in the Ausgrid dataset is obtained with a meter installed to measure solar generation for feed-in tariff
payments.

The meter recording solar generation operates in gross metering mode, in which power flow
measurements are recorded in a single direction (e.g. from the PV inverter) (Ratnam, Weller, and
Kellett 2015a). In the Ausgrid dataset, residential PV generation (in kWh) is referred to asGross Gen-
eration (GG), recorded at the conclusion of each half hour interval. More specifically, each customer
in the Ausgrid dataset has 48 GG entries on each day, where each entry represents the energy pro-
duced by the PV panel over the preceding half hour, as seen by the meter. We denote by gg( j) the
conversion of the daily half hour interval GG entries, to an average power (i.e. PV generation in kW)
over the half hour period (( j− 1)D, jD), where j denotes a time index.

A separate meter operating in gross metering mode is located at each residential premises to
measure and record energy consumption. Residential energy consumption is billed according to a
time-of-use or an inclining block rate, where each customer selects their respective preference (Aus-
grid 2014c). In the Ausgrid dataset, residential energy consumption (in kWh) is referred to as Gen-
eral Consumption (GC), recorded at the conclusion of each half hour interval. More specifically, each
customer has 48 GC entries on each day, where each entry represents the energy consumed by the
customer over the preceding half hour. We denote by gc( j) the conversion of the daily half hour
interval GC data to an average power (i.e. load in kW) over the half hour period (( j− 1)D, jD),
where j denotes a time index.

A third meter that measures and records Controllable Load (CL) associated with water heating is
located in 137 of the 300 residential premises. That is, 137 of the 300 residents in the Ausgrid dataset
allow the utility to control their all-electric-heated water systems for periods in the day (in a manner
that ensures minimal impact to the network) given a financial incentive. The two financial incentives
offered to customers are referred to as an off-peak 1, or an off-peak 2 tariff. The off-peak 1 tariff is
offered to customers that allow the utility to switch ‘off’ their all-electric-heated water systems for 18
h per day. The more expensive off-peak 2 tariff is offered to customers that allow the utility to switch
‘off’ their all-electric-heated water systems for 8 h per day. While the precise tariff is not shown in
the dataset, customer-specific switching times associated with off-peak 1 and off-peak 2 tariffs may
be inferred in the CL dataset, where residential CL data (in kWh) is recorded after each half hour
interval on each day. We denote by cl( j) the conversion of daily half hour interval CL data, to an
average power (i.e. load in kW) over the period (( j− 1)D, jD), where j denotes a time index.
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The meter recording CL is co-located with the meters recording GG and GC, depicted by the
shaded region in Figure 2. The demand or average power flow (in kW) from (to) the grid to (from)
the residential system over the period (( j− 1)D, jD) is denoted by d( j) . 0 (d( j) , 0), where j is a
time index. The power balance equation for the residential energy system depicted in Figure 2 is

d( j) = gc( j)−gg( j)+cl( j), (1)
which must hold for all time indices j.
Note that customers that do not have a controllable load do not have a meter recording CL data.

In this case, the power balance equation in Equation (1) reduces to d( j) = gc( j) − gg( j) for all j.
A summary of the key Ausgrid dataset parameters is included in Table 1. The consumption cat-

egory in Table 1 is consistent with terminology provided by Ausgrid (2014e).

2.2. Daylight saving time

We present observations when moving from AEST to AEDT (or vice versa). This time change is
commonly referred to as the start (or end) of ‘daylight saving time’. On 3 October 2010 (the start
of daylight saving time), we observe 0 entries from 2 am to 3 am in the respective GC and CL fields.
Further, PV generation (in the GG field) is time-shifted back an hour. On 3 April 2011 (the end of

Figure 2. Residential system illustrating the direction of positive power flows and meters recording gross generation (GG), general
consumption (GC), and controllable load (CL) consumption. Arrows associated with gg( j), gc( j), cl( j) , and d( j) illustrate the direc-
tion of positive power flow, and j denotes a time index. Power flows against the direction of the arrow associated with d( j) are,
therefore, negative. The meters in the shaded region are co-located at residential premises.

Table 1. Key Ausgrid dataset parameters.

Area of the Ausgrid network 22,275 km2

Number of customers 300
Number of unique postcodes 100
Date: 1 July 2010 to the 30 June 2013 1096 days
Time format AEST or AEDT
A single day: T 24 h from midnight
Number of daily intervals: s 48
Interval period: Δ D = T/s = 0.5 h
Generator capacity (in kWp) Tested capacity of each PV unit
Consumption category: CL (in kWh) Controllable load consumption
Consumption category: GC (in kWh) General consumption
Consumption category: GG (in kWh) Gross generation
Number of customers with CL data 137
Number of customers with GC data 300
Number of customers with GG data 300
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daylight saving time), we do not observe an extra hour of data in any of the data-fields, GG, GC, CL,
respectively. We therefore assume that turning back the clock over-writes the previous hour of data.

During October of each year, CL data entries vary due to the commencement of daylight saving
time. On 4 October 2010, the hot water systems of some customers are switched on an hour later,
others are not. On the last week of October, some of the CLs are switched on an hour earlier, con-
sistent with the commencement in daylight saving time prior to 2007.3 We recommend CL switching
times be inferred from the CL data on each day, for each customer. When approximating these
switching times, note that each CL is switched ‘on’ minutes or hours apart in a manner that ensures
minimal impact to the network.

3. Clean dataset: methodology

In principle, the dataset in the previous section consists of load and generation data for each of 300
customers at 30-min resolution for a 3-year period. In practice, however, several factors exist which
lead to anomalous measurements in the dataset (e.g. when a PV inverter fails). In this section, we
describe how these anomalous measurements are identified and subsequently excised, producing
a ‘clean dataset ’. Moreover, our approach is very conservative as we place a higher value on the qual-
ity of the clean dataset rather than the quantity of data records. Further work to qualify anomalous
data records removed in this section is certainly possible.

3.1. Residential load: GC

We remove customers with anomalous load recordings on any day in a 3-year period that potentially
arise when customers go on holidays and disconnect (i.e. switch off) most appliances. More specifically,
we remove customers with a maximum load less than 6W on any day of the year (i.e. any day where
gc( j) < 0.006 for all j = 1, . . . , s). Customers removed often have data suitable for analysis on many
days of each year, but not all. The customers removed based on this criterion are presented in Table 2.

In Figure 3, we present a small sample of days that contributed to four of the seven customers
being removed from the Ausgrid dataset. That is, each subplot in Figure 3 corresponds to one of
the four customers, where the daily load of each customer is presented on three separate occasions.

In Figure 3(a) and 3(c), we observe that Customer 9 and Customer 221, respectively, have days
where no load is recorded. In contrast, Customer 191 and Customer 229 in Figure 3(b) and 3(d),
respectively, have days with very low load recordings (i.e. 2W). These daily low load (or no load)
recordings potentially indicate that a customer is on holidays on the respective day.

The residential load of the remaining 293 customers is presented in Figure 4 in an aggregated
form. We sum the load gc( j) of each customer with reference to time index j, and we repeat this pro-
cess for each time index j on each of the 1096 days, with the results presented in Figure 4(a). Each
year in Figure 4(a) (on the x-axis) denotes 365 days (or 366 days during a leap year) from 1 July of the
previous year. To present a load duration curve, we sort the aggregated data presented in Figure 4(a)
across the complete set of 1096 days, which is depicted in Figure 4(b).

In Figure 4(a), we observe a peak load of 828 kW, which occurs during the 2010–2011 summer.
This peak occurred during the first week in February 2011, one of the warmest days (i.e. high ambi-
ent temperatures) on record in Sydney (Australian Government Bureau of Meteorology 2011).
During the 2012–2013 summer, the peak load in Figure 4(a) is 730 kW, which is again significantly
greater than the winter peaks of each year. We also observe three occasions where the aggregated
load is zero, consistent with the change from AEST to AEDT. In Figure 4(b), we observe that the
aggregate load is below 400 kW at least 98% of the time.

Table 2. Anomalous load data: Customer ID.

Customer ID 9 121 150 191 221 229 260
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3.2. Residential generation: GG

In this section, we remove customers with anomalous generation recordings on any day in the 3-year
period. Each customer removed often has data suitable for analysis on many days of each year,
but not all. Customers removed have PV generation data that falls into one of the following three
categories:
. Category 1 includes customers with a maximum generation less than 0.06 kW on any day of each

year (i.e. any day where gg( j) < 0.06 for all j = 1, . . . , s). Data removed by this category poten-
tially arise when PV inverters fail, or generation production is very low. A consequence of this
category is the removal of 209 customers from the Ausgrid dataset.

. Category 2 includes customers with a daily generation less than 0.325 kWh and a maximum gen-
eration less than 0.101 kW on any of the 1096 days (i.e. any day where gg( j) < 0.101 for all
j = 1, . . . , s, and gg(1) + · · · + gg(s) ≤ 0.65 kW). Data removed by this category potentially
arise when daily PV generation profiles fall below a threshold whereby there is significant uncer-
tainty regarding the quality of the data. Further work to confirm the quality of data removed by
this category is certainly possible. A consequence of this category is the removal of 191 customers
from the Ausgrid dataset, of which 36 customers are in addition to those customers identified in
Category 1.

. Category 3 includes customers that generate more than 0.02 kWh during the early morning before
5 am on any day of each year (i.e. any day where gg(1) + · · · + gg(10) . 0.04 kW). Data removed
by this category potentially arise when measurement errors exist.4 A consequence of this category
is the removal of six customers from the Ausgrid dataset, of which one customer (ID 248) is in
addition to those customers identified with Categories 1 and 2.

Figure 3. Example days and associated load consumption contributing to the removal of four customers from the Ausgrid dataset.
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We present a small sample of days that contributed to 4 of the 246 customers being removed from
the Ausgrid dataset. Each subplot in Figure 3 corresponds to one of the four customers, where the
daily generation of each customer is presented on three separate occasions.

In Figure 5(a), we observe that Customer 1 has days where no generation is recorded, and these
days were identified via a Category 1 removal. In Figure 5(c), we observe that Customer 215 has days
where very little generation is recorded, and these days were identified via a Category 2 removal. In
contrast, both Customer 145 and Customer 248 have days with a very small amount of generation
recorded in the early morning before 5 am, and these days were identified via a Category 3 removal.
A careful examination of Figure 5(b) and 5(d), respectively, is required to observe the very small
amount of PV generation recorded in the early morning before 5 am for both Customer 145 and
Customer 248.

The clean dataset (defined later in Section 3.4) includes the PV generation and GC of the
remaining 54 customers. That is, 54 customers did not present load or generation abnormalities
as outlined above. The aggregate PV generation of these 54 customers is presented in Figure 6(a),
where each year on the x-axis denotes 365 days (or 366 days during a leap year) from 1 July of the
previous year. More specifically, in Figure 6(a), we sum the generation gg( j) of each customer with
reference to time index j, and we repeat this process for each time index j on each of the 1096
days. In Figure 6(b), we sort the aggregated generation in Figure 6(a) across the complete set
of 1096 days.

We observe PV generation peaks at approximately 110 kW during each summer period in Figure
6(a). We observe in Figure 6(b), the PV units generate electricity 45% of the time (or do not generate
power 55% of the time), consistent with the daily variability of solar irradiance.

Figure 4. Aggregated load of 293 customers over 1096 days: (a) the aggregated load is presented chronologically from 1 July 2010
and (b) the aggregated load is sorted to obtain the load duration curve.
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3.3. Controllable load

In identifying the clean dataset, we ignored anomalous CL data. In this subsection, we look to assist
the interested researcher seeking to identify anomalous CL data in the Ausgrid dataset.

The removal of utility controlled all-electric heated water systems often occurs when a customer
upgrades to a gas-heated, solar-heated, or a heat pump water system. Customers that potentially
remove utility controlled all-electric heated water systems are identified in the Ausgrid dataset via
the CL field. That is, days where a customer allows a utility to control their all-electric heated
water systems are identified via the presence of a daily CL field, and days where a customer removes
permission for a utility to control their all-electric heated water systems are identified via the absence
of a daily CL field. In the Ausgrid dataset, 11 customers with a daily CL field on a fraction of the 1096
days listed are included in Table 3.

Two additional customers not listed in Table 3 have potentially removed a utility controlled
all-electric heated water system. That is, on each day no data are recorded against the CL field of
Customer 37 and Customer 281 (with the slight exception of a single half hour interval entry for
customer 37 on a single day). Hence, at least 13 customers have anomalous CL data in the Ausgrid
dataset.

Further analysis to clean the CL dataset is certainly possible. For example, residential customers
potentially reduce or increase the period of time a utility switches ‘off’ their all-electric heated water
systems. This change in preference is reflected in the off-peak tariffs offered to residential customers.

Table 3. CL change: Customer ID.

ID 27 68 95 161 187 248 272 284 289 293 294

Figure 5. Example days and associated PV generation contributing to the elimination of four customers from the Ausgrid dataset.
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A change from an off-peak 1 to an off-peak 2 tariff (or vice versa) potentially leads to anomalous CL
data within the Ausgrid dataset.

3.4. Customer ID and location

We define the clean dataset as the subset of 54 customers (from the total of 300), which are free of
both load anomalies and PV generation anomalies. Note that 7 of the 300 customers had both load
anomalies and PV generation anomalies. Customer 161 (cf. Table 3) is included in the clean dataset
since we do not remove customers with anomalous CL. Customer 2 is included in the clean dataset
since no anomalous load or generation recordings were identified; however, we note that from 12
October 2012 to 31 December 2012, data recordings were missing for this particular customer.
We present the 28 postcode regions containing these 54 customers in Figure 7. The ID of each cus-
tomer included in the clean dataset is presented in Table 4. In Figure 7, we observe that the majority
of customers in the clean dataset are located in urban regions. Further, postcodes with smaller areas
denote regions with higher population densities.

4. Clean dataset: analysis

In this section, we identify key characteristics of the clean dataset. We investigate aggregated demand,
daily residential load and daily residential PV generation, and the orientation of ‘rooftop’ PV panels.

Figure 6. Aggregated generation of 54 customers over 1096 days: (a) the aggregate generation is presented chronologically from 1
July 2010 and (b) the aggregated generation is sorted to obtain the generation duration curve.
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Figure 7. Each customer in the clean dataset belongs to a postcode region highlighted (ABS 2006). Map data: ©2015 Google
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4.1. Aggregated analysis

The residential demand of 54 customers included in the clean dataset is presented in Figure 8 in an
aggregated form. In Figure 8(a), we sum the demand d( j) of each customer with reference to time
index j, and we repeat this process for each time index j on each of the 1096 days. Each year on the x-
axis commences on 1 July. In Figure 8(b), we sort the aggregated demand across the complete set of
1096 days.

In Figure 8(a), we observe the peak aggregated demand is 185 kW during the 2010–2011 summer.
During the 2012–2013 summer, the peak aggregated demand is greater than the winter aggregated
peak of each year. Aggregated negative demand that arises from surplus PV generation peaks at 85
kW. In Figure 8(b), we observe that the duration of the summer aggregated peak is less than 2% of
the time, and aggregated negative demand (from surplus PV generation) occurs 23.4% of the time.

Table 4. Customer IDs in the clean dataset.

2 13 14 20 33 35 38 39 56
69 73 74 75 82 87 88 101 104
106 109 110 119 124 130 137 141 144
152 153 157 161 169 176 184 188 189
193 201 202 204 206 207 210 211 212
214 218 244 246 253 256 273 276 297

Figure 8. Aggregated demand of 54 customers over 1096 days: (a) the aggregate demand is presented chronologically from 1 of
July 2010 and (b) the aggregated demand is sorted to obtain the demand duration curve.
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To present the aggregated data in another form, we consider daily aggregate load and generation
profiles, respectively, for each of the 54 customers in the clean dataset. In Figure 9, we present the
daily mean and median aggregated generation profiles for summer and winter, respectively, with
error bars that indicate one standard deviation about the mean. All references to standard deviation
refer to one standard deviation (+1s) about a mean aggregate generation profile, or a mean aggre-
gate load profile, where the context will make clear the intended meaning.

In Figure 9(a), we observe that the summer median aggregated generation is slightly greater than
the summer mean aggregated generation during peak PV production (i.e. 85.3 kW compared to 76.7
kW). The summer PV generation occurs between 6.30 am and 7.30 pm. Also, the standard deviation
in Figure 9(a) increases as PV production increases, highlighting that many days are impacted by
cloud cover.

In Figure 9(b), we observe that the winter median aggregated generation profile is slightly
greater than the winter mean aggregated generation profile during peak PV production (i.e. 72.7
kW compared to 62.3 kW). The winter PV generation occurs between 7 am and 5 pm. The standard
deviation in Figure 9(b) increases as PV production increases. Thus, the results in Figure 9 are con-
sistent with the availability of solar irradiance, which is greater in summer than winter and variable
on each day.

In Figure 10, we present the daily mean and median aggregated load profile for summer and win-
ter, respectively, with error bars that indicate one standard deviation about the mean. In Figure 10(a),
we observe that the summer mean aggregated load is slightly greater than the summer median aggre-
gated load during evening peak (i.e. 61.6 kW compared to 53.7 kW). Also, the summer residential
load often peaks between 6 pm and 6.30 pm. The standard deviation in Figure 10(a) increases

Figure 9. Aggregated generation: mean and median with error bars that indicate one standard deviation about the mean in (a)
summer and (b) winter.
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from 9 am until the early evening when mean aggregate load peaks. In Figure 10(a), we observe that
residential load from midnight till 9 am more closely corresponds to the time-of-day, since the stan-
dard deviation during this period is small.

In Figure 10(b), the winter mean aggregated load is slightly greater than the winter median aggre-
gated load during the evening peak (i.e. 90.3 kW compared to 89.9 kW). We observe that residential
loads often peak between 6 pm and 6.30 pm in winter. From midnight till 5 am, and from 10 am
until midnight, the standard deviation in winter is clearly less than the standard deviation in summer,
highlighting residential loads in winter are more closely tied to the time-of-day during periods outside
the morning peak. Also, peak winter loads on most days are typically (but not always) larger than peak
summer loads. Recall, in Figure 8(a) the peak aggregated demand often occurred in summer.

4.2. Residential analysis

In Section 4.1, we analysed aggregate load and generation profiles for the clean dataset. In this section,
we investigate daily residential load and PV generation variability for a small number of customers in
the clean dataset. With an intention to highlight the daily variability in customer-specific load and PV
generation profiles, we select three arbitrary dates for the purpose of comparison. More specifically,
residential load and generation profiles for the first four customers in the clean dataset are presented
on three consecutive Mondays from 1 July 2010, respectively. These four customers are located in the
Central Coast region of NSW towards the northern coastline, and are in close proximity to one
another. Due to this close geographical proximity, it is to be expected that the PV generation profiles
of each respective customer would be similarly affected by cloud cover.

Figure 10. Aggregated load: mean and median with error bars that indicate one standard deviation about the mean in (a) summer
and (b) winter.
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In Figure 11, we present load profiles on three consecutive Mondays for the first four customers in
the clean dataset. We observe that the shape of the load profiles in Figure 11(a)–(c) is significantly
different on each day, for each customer. In contrast, we observe that the shape of the load profile in
Figure 11(d) on 12 July 2010 and 19 July 2010 is flatter and lower for Customer 20. As such, no visual
confirmation regarding a strong relationship in energy consumption on consecutive weekdays is evi-
dent in Figure 11. Information regarding customer behaviour that affects energy use that leads to
these variations in residential load profiles is provided in Slini, Giama, and Papadopoulos (2015)
and Pothitou et al. (2014).

In Figure 12, we present generation profiles on three consecutive Mondays for the first four customers
in the clean dataset. In Figure 12(a)–(d), we observe that daily peaks in PV generation vary across
the customers, with peak generation on 19 July 2010 reaching 0.9 kW for Customer 2, 1.01 kW for Cus-
tomer 13, 0.64 kW for Customer 14, and 0.89 kW for Customer 20. Likewise, the installed capacity of each
rooftop PV unit varies, with the installed PV capacity in the Ausgrid dataset recorded as 1.62 kWp for
Customer 2, 2.22 kWp for Customer 13, 1.48 kWp for Customer 14, and 1.57 kWp for Customer 20.

In Figure 12(b), we observe that the shape of the generation profiles is significantly different on
each day. In contrast, we observe the shape of the generation profiles for Customer 2, Customer 14,
and Customer 20 in Figure 12(a), 12(c), and 12(d) on 19 July 2010 are similar, yet vastly different to
the generation profile of Customer 13 on 19 July 2010 (wherein PV production in the afternoon is
much greater than PV production in the morning). We observe that fluctuations in PV production
for some customers in close proximity to one another are potentially related. To assist the interested
researcher looking to further describe these observations for each customer, information regarding
solar irradiance, a key factor in PV production is provided in Elliston et al. (2015), Dehghan et al.
(2014), and Šúri, Huld, and Dunlop (2005).

Figure 11. Load profiles for customers 2, 13, 14, and 20, on consecutive Mondays, respectively.
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4.3. Orientation of the PV panels

To increase the amount of solar energy received on PV panels, residential customers generally orien-
tate their PV panels due north in the southern hemisphere (Kacira et al. 2004; Šúri et al. 2007; Chatters
2015). However, PV incentives designed to reduce the evening peak demand (i.e. time-of-use net
metering) potentially encourage customers to orientate their PV panels towards the west (Mondol,
Yohanis, and Norton 2007). Another motivation to orientate PV panels to the west or east is the
prevalence of shade from multistory dwellings (or large trees) that cover north-facing PV panels.
Therefore, the optimumPVpanel orientation potentially shifts from due north (in the southern hemi-
sphere) to another orientation that is more specific to an individual residential dwelling.

The PV panel orientation of each customer in the Ausgrid dataset is unknown. Each customer in
the clean dataset potentially orientates their rooftop PV panels close to due north. To assist with
future research that verifies the PV panel orientation of each customer in the Ausgrid dataset, we
examine generation profiles (gg( j) for all j = 1, . . . , s) for four of the customers in the clean dataset.
We present PV generation profiles on 5 February 2011 (a day in summer), and on 9 July 2012 (a day
in winter) for Customer 2 in Figure 13(a), for Customer 69 in Figure 13(b), for Customer 106 in
Figure 13(c), and for Customer 214 in Figure 13(d).

In Figure 13, we observe the generation profiles of Customer 2, Customer 69, and Customer 214
peak around midday on 5 February 2011 and on 9 July 2012. These customers potentially orientated
their respective PV panels due north (Ward, Moore, and Lindsay 2012). In contrast, the generation
profile of Customer 106 peaked around 3 pm on 5 February 2011, consistent with a west-facing PV
panel orientation (Ward, Moore, and Lindsay 2012). Further work to verify and infer the PV panel
orientation of each customer in the clean dataset is certainly possible.

Figure 12. Generation profiles for customers 2, 13, 14, and 20, on three consecutive Mondays, respectively.
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5. Conclusions

In this paper, we have reported a publicly available dataset of measured load and PV generation from
300 residential customers located in an Australian distribution network. This dataset is a valuable
resource to researchers and policy-makers alike since (1) residential load is measured separately
to residential PV generation, (2) time-of-use meters record residential load and PV generation
energy measurements after each half hour interval on each day, and (3) the dataset spans a 3-year
period. To facilitate use of the dataset, we have presented an approach to remove customer-specific
anomalous load and anomalous generation profiles (e.g. when a PV inverter fails), leaving a so-called
clean dataset. Analysis of the clean dataset is presented on daily, seasonal, and annual timescales. We
envision that the clean dataset will assist future research in the area of categorisation and forecasting
of PV generation variability and intermittency.

Notes

1. Ausgrid information published in this paper is publicly available and no permission for publication was required.
2. For the time period 1 July 2012–30 June 2013, 187 customers make it into the ‘clean dataset’.
3. In 2007 the AEDT commencement date was moved from the last Sunday of October to the first Sunday of October.
4. Anomalous data relating to clock recording were rectified by Ausgrid in March 2015. These anomalous data were

identified via a category 3 elimination.
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Appendix. Selected customer ID data

The Customer ID’s and corresponding dates presented in Figures 3, 5, 11–13 of this paper are included in Table A1.

Table A1. Index of each Customer ID and corresponding dates presented in Figures 3, 5, 11–13.

Section Figure Customer ID Date

3.1 3 9 19 January 13 24 February 13 15 March 13
191 3 July 10 18 July 10 21 August 10
221 29 October 12 17 November 12 17 May 13
229 23 February 12 11 March 12 29 March 12

3.2 5 1 28 January 13 23 February 13 23 May 13
145 9 September 10 11 September 10 28 May 11
215 14 July 10 15 July 10 16 July 10
248 21 February 11 3 April 11 21 April 11

4.2 11 2 5 July 10 12 July 10 19 July 10
13 5 July 10 12 July 10 19 July 10
14 5 July 10 12 July 10 19 July 10
20 5 July 10 12 July 10 19 July 10

4.2 12 2 5 July 10 12 July 10 19 July 10
13 5 July 10 12 July 10 19 July 10
14 5 July 10 12 July 10 19 July 10
20 5 July 10 12 July 10 19 July 10

4.3 13 2 5 February 11 9 July 12
69 5 February 11 9 July 12
106 5 February 11 9 July 12
214 5 February 11 9 July 12
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Part 2

Battery scheduling: A single
residential system



3

Assessing customer benefit of
battery scheduling

Part 2 of this thesis is comprised of Chapter 3 and Chapter 4, in which is defined a single residential

energy system with solar PV co-located with battery storage. Renewable energy incentives such

as feed-in tariffs and the financial policy of net metering, when offered in conjunction with time-

of-use pricing, are also defined. The results in all case studies are based on the dataset reported

in Chapter 2.

Chapter 3 consists of the paper titled An optimization-based approach to scheduling residential

battery storage with solar PV: Assessing customer benefit. One of the key contributions of this

paper is a quadratic program (QP)-based scheduling algorithm for residential battery storage

that is co-located with solar PV. The QP-based scheduling algorithm is designed to increase the

operational savings that accrue to a residential customer, while penalizing large voltage swings

stemming from reverse power flow and peak load in the distribution grid. We define incentives

for PV generation, and their required metering topologies, to assess the financial benefits of the

QP-based algorithm. Our framework for defining a residential energy system is consistent with all

thesis chapters, with the exception of some notational changes made to improve the clarity and

presentation of subsequent chapters.

In Chapter 4 we benchmark the QP-based algorithm introduced in Chapter 3, when customers

are offered the financial policy of net metering. In the context of scheduling battery storage,

we benchmark the maximum day-ahead operational savings that accrue to customers with the

operational savings that accrue when implementing the QP-based algorithm. Further, by means of

a case study, we benchmark reductions in reverse power flow in the context of average grid profiles.
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a b s t r a c t

Several studies have suggested that battery storage co-located with solar photovoltaics (PV) benefits
electricity distributors in maintaining system voltages within acceptable limits. However, without careful
coordination, these potential benefits might not be realized. In this paper we propose an optimization-
based algorithm for the scheduling of residential battery storage co-located with solar PV, in the context
of PV incentives such as feed-in tariffs. Our objective is to maximize the daily operational savings that
accrue to customers, while penalizing large voltage swings stemming from reverse power flow and peak
load. To achieve this objective we present a quadratic program (QP)-based algorithm. To complete our
assessment of the customer benefit, the QP-based scheduling algorithm is applied to measured load and
generation data from 145 residential customers located in an Australian distribution network. The results
of this case study confirm the QP-based scheduling algorithm significantly penalizes reverse power flow
and peak loads corresponding to peak time-of-use billing. In the context of feed-in tariffs, the majority of
customers exhibited operational savings when QP energy-shifting.

Crown Copyright © 2014 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Climate change, energy security, and limited fossil fuel re-
sources are drivers for the integration of renewable energy sour-
ces such as solar into the modern power grid. Significant
challenges in converting the abundant solar resource into reliable,
high-quality electricity include variability of solar irradiance on
both daily and seasonal timescales in addition to intermittency
arising from moving cloud cover on timescales of much shorter
duration [1,2].

Despite these challenges, governments around the world have
in recent years encouraged grid-integrated residential-scale
(rooftop) solar photovoltaic (PV) generation through financial in-
centives such as feed-in-tariffs (FiTs) paid directly to customers
[3e5]. These financial incentives in conjunction with a sharp drop
in the capital cost of small-scale PV, and increasing electricity pri-
ces, have led to the dramatic uptake of residential PV in some
countries [6,7]. For example, in Germany PV plant installations

exceed 1.2 million, and as of September 2012, peak PV capacity
reached 31 GW with about 70% of this 31 GW being connected to
the low voltage grid [6].

An adverse consequence of such significant PV penetration in
the low voltage electricity distribution network is voltage rise
leading to reverse power flow. Voltage rise is particularly pro-
nounced when large numbers of rooftop PV generators are con-
nected in close proximity to each other [8e14]. A further adverse
consequence of significant PV penetration is voltage dip. This oc-
curs, for example, when passing cloud cover results in a significant
drop in rooftop PV generation [10e12,15]. If these voltage de-
viations fall outside power quality standards, either the utility
covers the direct cost of mitigation or the burden of voltage regu-
lation falls to the PV producer [2,6,8,13,14].

There are two common approaches to managing voltage rise in
the low voltage grid. The first is to augment the distribution grid by
increasing conductor size and/or upgrading transformers to lower
network impedances [6,9,16]. The second is to constrain PV gen-
eration at times of low electricity consumption in order to preserve
compliance of allowable voltage deviations [13,17,18]. Neither
approach is optimal for increased PV penetration as network
augmentation adds to the overall PV grid integration costs [9]
whereas spilling PV generation leads to lost revenue for the
producer.
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Alternative approaches to managing PV generation in the low
voltage grid are facilitated through Advanced Metering Infrastruc-
ture (AMI) [19e23]. When two way communication is enabled
between the utility and customer via AMI, opportunities exist for
more advanced demand-side management initiatives that include
direct [20,24e28], and price-responsive [21e23,29,30] load control.
For example, the utility can enact price-responsive load control by
broadcasting a day-ahead time-varying electricity tariff to the AMI.
To maintain an existing energy usage level, the customer may
choose to schedule battery storage in response to the time-varying
electricity tariff or pay a higher energy bill. However without
careful coordination of the residential battery schedules, network
load curve smoothing via demand-side management initiatives
may not be realized [26,31,32].

Several authors have investigated energy-time shifting through
battery storage with a focus on minimizing residential energy bills
and reducing network peak demand [33e37], leading to battery
schedules that either assist or exacerbate non-compliant voltage
deviations associated with solar PV. The reduction of network peak
demand is incorporated into an optimization problem in Ref. [34],
where the objective function includes financial incentives for res-
idents to deliver energy to the grid when the purchase cost of
electricity is high. Hence, when interconnected customers in close
proximity implement the objective function in Ref. [34], large
voltage swings associated with reverse power flow potentially arise
due to the battery scheduling. The reduction of network peak de-
mand is also incorporated into a linear program in Ref. [33], where
the energy flowing from the point of common coupling (PCC) to the
customer is minimized when residential load exceeds residential
PV production. Otherwise the battery is scheduled in Ref. [33] to
charge during the off-peak pricing period, and discharge during the
peak pricing period, with no penalty on increased reverse power
flow, potentially exacerbating voltage rise. In contrast, the reduc-
tion of network peak demand and the mitigation of undesirable
reverse power flow, i.e., load curve smoothing, is incorporated into
the optimization problems in Refs. [35e37]. The optimization
problem in Ref. [35] achieves load curve smoothing by omitting
financial incentives encouraging solar PV uptake (e.g., feed in tariffs
or net metering) in the objective function. The optimization prob-
lem in Ref. [36] also achieves load curve smoothing by removing
incentives for reverse power flow associated with battery sched-
uling, while permitting incentives encouraging solar PV uptake.
Another method for reducing network peak demand while poten-
tially abating reverse power flow is incorporated into the optimi-
zation problem in Ref. [37], where a sophisticated dynamic pricing
environment provides additional incentives for customers to
smooth their day-ahead energy consumption.

Our objective in this paper is similar to [36] in one respect, we
seek to maximize residential PV generation co-located with battery
storage so that there is a financial benefit to the resident whilst
simultaneously alleviating the utility burden associated with peak
demand and reverse power flow. Our approach achieves this
objective for a range of financial incentives offered for solar PV
uptake, such as feed-in tariffs [3e5,36] and net metering [34,38,39],
in addition to other more sophisticated dynamic day-ahead pricing
rates [23,29,37]. We assume peak billing rates coincide with gen-
eration shortages or peak grid demand and look to minimize en-
ergy flow from the grid to the customer during these events, while
additionally reducing reverse power flow.

Implicit in our approach is the expectation that residential
customers have installed Home Energy Management (HEM) sys-
tems that: (1) forecast the day-ahead residential load and solar PV
generation, (2) coordinatewith the AMI to receive day-ahead prices
for energy delivered to and from the grid, including any additional
PV incentives, (3) run optimization-based algorithms daily, and (4)

schedule battery storage in the day-ahead. In this paper we assume
the day-ahead forecast of load and generation from the HEM sys-
tem are known and perfect, and we focus on the formulation of an
optimization-based algorithm that provides the day-ahead battery
schedule. We also assume the customers' HEM system is fully
automated and employs a wireless communication architecture,
similar to the description in Ref. [27]. Furthermore, we expect
global investment and government mandates will drive both
technology improvements and economies of scale for battery
storage as has happenedwith solar PV [40e43]. Therefore our focus
is on the operational savings that accrue to a resident when the
HEM schedules a battery, and we exclude the capital costs of pur-
chasing a battery from our consideration.

In this paper we consider the quadratic program (QP)-based
minimization of the energy supplied by, or to, the grid in a resi-
dential PV systemwith co-located battery storage, first presented in
Ref. [44]. Our objective is to smooth network load curves while
providing incentives to customers to energy time-shift. In the
present paper we remove a bias in the QP-based algorithm in
Ref. [44] by including an additional battery constraint related to the
state of charge, and with a modification to the greedy-search
heuristic that selects the key design parameters in this QP we
reduce computational time. Furthermore, we apply the improved
QP-based scheduling algorithm to measured load and generation
data from 145 Australian residential customers, and investigate the
financial savings that accrue to customers. In the present paper, the
financial benefit associated with the daily battery charge/discharge
schedule is our primary focus in the context of financial incentives
offered for solar PV generation such as feed-in tariffs, rather than
the utility benefit of load curve smoothing.

This paper is organized as follows. In Section 2 we introduce the
optimization-based approach for scheduling battery storage in a
residential PV system, and include a motivating example. To assess
the customer benefit, we introduce a framework in Section 3 that
incorporates different demand-side management approaches for
price-response load control, which integrates applicable incentives
for PV generation. With this framework we define the daily energy
bill for a single customer with and without battery storage. In
Section 4 we describe the operations savings associated with bat-
tery scheduling, and in Section 5 we present an algorithm for
selecting a key design parameter in the QP described in Section 2. In
Section 6 we implement the QP-based algorithm given real-world
data from 145 residential customers located in an Australian dis-
tribution network in the context of feed-in tariffs, and investigate
the customer benefit to changes in different elements within the QP
(e.g., battery size).

1.1. Notation

Let ℝs denote s-dimensional vectors of real numbers and ℝs
�0 s-

dimensional vectors with all non-negative components where, as
usual, ℝ1 ¼ ℝ. I denotes the s-by-s identity matrix and 12ℝs

�0 de-
notes the all-1 s column vector of length s. 0 denotes an all-zero
matrix, or an all-zero column vector, where the context will make
clear the dimension intended, and T¼[tij] denotes the s-by-smatrix
satisfying tij¼1 for i�j and tij¼0 elsewhere.

2. Problem formulation

2.1. Definitions and constraints

Fig. 1 illustrates the topology of the system under consideration,
including a set of meters M ¼ fM1;M2;M3g installed for the pur-
pose of billing and compensation. For each k2f1;…; sg, meter M1
measures the average PV generation gk (in kW), meterM2 measures
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the average power from node 1 to node 2 (lk�bk in kW), and meter
M3 measures the average power pk (in kW) supplied by (or to) the
grid. Meters M2 and M3 may be bi-directional, whereas meter M1
needs only be unidirectional since PV generation satisfies gk�0 for
all k. Also shown in Fig. 1 are vectors hb and hc, which represent
financial incentives for billing and compensation respectively,
defined in Section 3.2.

The power flows indicated in Fig. 1 are represented by vectors of
length s, where s is the number of time intervals of length D, and
T¼sD (in hours) is the time window of interest. In this paper we
generally consider T¼24 h, D ¼ 1/2 hour (30 min), which implies
s¼48. Other choices are certainly possible, subject only to
commensurability of T, D and s.

We represent the average power delivered to the residential
load (in kW) over the period ((k�1)D, kD) by lk for all k2f1;…; sg,
and define the load profile over [0,T] as l :¼ ½l1;…; ls�T2ℝs

�0. Like-
wise we represent the average PV generation (kW) over the period
((k�1)D,kD) by gk for all k2f1;…; sg, and define the generation
profile over [0,T] as g :¼ ½g1;…; gs�T2ℝs

�0. In what follows, we as-
sume the day-ahead forecasts of load and generation profiles are
known and perfect.

We represent the average power (in kW) supplied by (or to) the
grid over the period ((k�1)D,kD) by pk for all k2f1;…; sg and
define the grid profile over [0,T] as p :¼ ½p1;…;ps�T2ℝs. By
conventionwe represent power flowing from (to) the grid to (from)
the energy system by pk>0 (pk<0).

We represent the average power (kW) delivered from (or to) the
battery over the period ((k�1)D,kD) by bk > 0 (or bk < 0), and define
the battery profile over [0,T] as b :¼ ½b1;…; bs�T2ℝs. By convention
we represent charging (discharging) of the battery by bk<0 (bk>0).

From the configuration of the residential energy system in Fig. 1,
we observe that the following power balance equation

lk ¼ pk þ gk þ bk for all k2f1;…; sg; (1)

must hold.
The inclusion of the battery in Fig. 1 leads to additional con-

straints, which we now detail. To capture the limited “charging/
discharging capacity” of the battery, we constrain b by

B1 � b � B1 (2)

where B2ℝ�0 and B2ℝ�0.
Given b, the state of charge of the battery (in kWh) at time kD is

denoted by ck, where

ck :¼ c0 �
Xk
j¼1

bjD for all k2f1;…; sg; (3)

and c0 denotes the initial state of charge of the battery. We
represent the state of charge profile by c :¼ ½c0;…;cs�T2ℝsþ1.

If we represent the battery capacity (in kWh) by C2ℝ�0,
it necessarily follows that the state of charge profile is
constrained by

0 � c � C
�
1
1

�
: (4)

For a fixed initial state of charge satisfying 0�c0�C, we define
C :¼ ðc0=DÞ1; and C :¼ ð1=DÞðC � c0Þ1, and rewrite the battery
constraints equations (3) and (4) as

�C � �Tb � C: (5)

In this paper, we optimize a battery profile over a single day. In
order to avoid an energy-shifting bias in these results, we insist that
the state of charge of the battery at the end of a day is the same as
the state of charge of the battery at the beginning of the day, i.e.,

cs ¼ c0; (6)

where cs is the final state of charge at time sD.
Let A1 2 ℝ4s�s, and b1 2 ℝ4s be defined by

A1 :¼ ½ I �I T �T �T ; b1 :¼
�
B1T B1T CT C

T
�T

: (7)

We now substitute equation (7) into equations (2) and (5), and
equation (6) into (3), to succinctly write the battery constraints as

A1b � b1; (8)

1Tb ¼ 0: (9)

2.2. Objectives

In what follows, we seek to minimize the impact of the resi-
dential energy system on the grid, given a financial incentive to
energy time-shift, by minimizing

Xs
k¼1

hkp
2
k ; (10)

where hk is a selectable weighting such that hk�1 for all
k2f1;…; sg.

Specifically, given load and generation profiles l and g, and given
battery constraints c0, C, and B, B we seek a battery profile b and a
grid profile p which minimize the expression in (10), subject to
satisfaction of the power balance in equation (1).

The minimization in (10) is subject to both inequality and
equality constraints imposed by the battery (8) and (9) and the
power balance equation in (1), respectively. Lemma 1 below es-
tablishes this constrained minimization as a quadratic program
(QP).

Fig. 1. Residential system illustrating the direction of positive power flows and
financial incentives to energy time-shift. Arrows associated with gk, lk, bk and pk

illustrate the assumed direction of positive power flow. Financial incentives for each
meter M1, M2 and M3 are represented by vectors hb and hc (in $/kWh), in which arrows
illustrate the direction of power flow relevant for hb and hc.
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Lemma 1. The minimization of expression (10), subject to battery
constraints (8) and (9) and the power balance equation (1), can be
written as

min
x2ℝ2s

xTHx (11)

such that

A1x � b1; (12)

A2x ¼ b2; (13)

where

x :¼ �
pT bT

�T
2ℝ2s; H :¼

�
H 0
0 0

�
2ℝ2s�2s;

H :¼ diagðh1;…; hsÞ 2ℝs�s; A1 :¼ ½0 A1 � 2ℝ4s�2s;

A2 :¼
�
0T 1T

I I

�
2ℝðsþ1Þ�2s; b2 :¼

�
0

l� g

�
2ℝsþ1:

Proof. The result follows directly from equations (1), (8) and (9).

The grid profile obtained by solving (11) subject to constraints
(12) and (13) is said to be QP energy-shifted and we will refer to the
process of a customer implementing the daily battery and grid
profiles obtained by solving (11) subject to constraints (12) and (13)
as QP energy-shifting.

2.3. Example

In this example we consider two battery capacities, C¼1 kWh
and 10 kWh, to illustrate QP energy-shifting at a residence. For both
battery capacities, let c0¼ 0.5 C (initial battery state of charge), and
B ¼ �B ¼ 1kW (charge/discharge limits).

Let the load and generation profiles l and g be specified as shown
in Fig. 2(a), where the residence load includes a utility controlled
heated water cylinder [45].2 Both load and generation profiles are
specified for T¼24 h, D¼30 minutes and s¼T/D¼48. Additionally,
we let the weights hk¼1 for all k2f1;…; sg.

In Fig. 2(a) we observe the load profile peaks around midnight,
consistent with the utility switching on the all-electric-heated
water cylinder at the customer premises, and the generation pro-
file peaks around midday. Consequently the peak generation does
not align with the peak load at the residence.

Fig. 2(b) illustrates the base-line grid profile to which we
compare the grid profiles in Fig. 2(c) and (d). The base-line grid
profile has no battery to time-shift the grid profile p appearing in
(10) (C¼0 kWh). Therefore p is calculated directly from the power
balance equation in (1) with bk¼0. The grid profiles p illustrated in
Fig. 2(c) and (d) arise from the solution of the QP in Lemma 1.
Comparing the base-line results in Fig. 2(b) to the grid profile in
Fig. 2(c), we observe the 1 kW battery charges (bk<0) to increase
the base-line grid profile (e.g., from �1.26 kW to �0.81 kW be-
tween 11.30-Midday), and discharges (bk>0) to reduce the base-line

grid profile (e.g., from 3.69 kW to 2.69 kW between 23.30-
Midnight). In Fig. 2(d) we observe further reductions in the
magnitude of p, except between 23.30-Midnight, due to the battery
discharge constraint of 1 kW.

This example demonstrates the reductions in magnitude of the
grid profile p subject to the battery charge/discharge constraints
and capacity C. Hence, QP energy-shifting smooths residential load
curves when hk¼1 for all k2f1;…; sg. In what follows we design a
weighting matrix H in the QP that reduces residential energy bills,
and network peak load corresponding to peak pricing tariffs, while
penalizing reverse power flow.

2.4. Extended definition of grid profile

We now extend our definition of grid usage over the period
((k�1)D,kD) to include explicit reference to the battery capacity C
and weights hk as follows:

pC
k ðhkÞ :¼ lk � gk � bk for all k2f1;…; sg; (14)

where lk, gk, bk and hk remain as previously defined. We conse-
quently denote the grid profile over [0,T] by

pCðHÞ :¼
h
pC
1ðh1Þ;…;pC

s ðhsÞ
iT

2ℝs: (15)

When battery capacity C¼0, it follows that

p0
k ¼ lk � gk for all k2f1;…; sg; (16)

since the battery charging/discharging capacity bk¼0, k2f1;…; sg.
The case where C¼0 is defined as a base-line grid profile against
which we compare future grid profiles and is denoted by

Fig. 2. (a) Load and generation profiles l and g; (b) grid and battery profiles p and b for
C ¼ 0 kWh; (c) grid and battery profiles p and b for C ¼ 1 kWh; (d) grid and battery
profiles p and b for C ¼ 10 kWh.

2 In some countries, residents allow the utility to control their all-electric-heated
water systems for periods in the day, given a financial incentive. For these cus-
tomers, the utility switches their water-heating services on during periods of low
load, and off during periods of peak-load, in a manner that ensures minimal impact
to the network.
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p0 :¼
h
p0
1;…;p0

s

iT
: (17)

We note p0 is not a function of the selectable weights inH, as the
base-line grid profile is solely a function of load and generation
profiles in (16).

Remark 1. The grid profile p obtained from solving the quadratic
program in Lemma 1 depends not only on the battery constraints C,
B; B, c0, and selectedweightings hk, but also the load and generation
profiles l and g, respectively. Consequently p is a function
p ¼ pðl; g;C;B;B;c0;HÞ: For notational simplicity, however, we will
henceforth omit the functional dependence of p on the load/gen-
eration profiles and all the battery constraints other than the bat-
tery capacity C, preferring instead to simply write pC(H), where no
ambiguity arises. This notational convention reflects our primary
degrees of design flexibility, namely battery capacity C and the
weighting matrix H.

3. Billing for a single customer

In this section we define the energy bill for a single residential
customer for the household PV system depicted in Fig. 1. To reduce
the day-ahead energy bill when the customer uses QP energy-
shifting (Lemma 1), we require a financial policy (in $/kWh) and a
battery of capacity C. Since the financial policy requires meters in
certain locations, with particular modes of operation, we also
define the metering topology in Section 3.1.

3.1. Metering topology

To formulate the energy bill for a single residential customer, we
require the measured power flows from the residential energy
system in Fig. 1. Themetering topology defines how the power flows
are to be measured. To formalize the notion ofmetering topologywe
define two metering modes in terms of the meters M2M , and
provide an example with respect to meter M2 shown in Fig. 1.

1. Gross metering mode: We say that meter M2 operates in gross
metering mode if it measures power flow from node 1 to the
battery/load node 2, but not power delivered in the reverse di-
rection. That is, meter M2 measures and records only power
flows for which lk�bk�0. In the event lk�bk<0, themeter records
0 kW. Consequently gross metering mode requires only uni-
directional metering.

2. Netmeteringmode:We say thatmeterM2 operates innetmetering
mode if it measures power flow in both directions, i.e., fromnode
1 to the battery/loadnode2 (lk�bk�0), aswell as powerdelivered
in the reverse direction (i.e., lk�bk<0). Consequently net meter-
ing mode requires bi-directional metering [46].

The metering topology is defined by the mode of operation
(gross or net) of each meter M2M in Fig. 1. In order to consider
gross metering mode, the direction of power flow must also be
included.

The metering topologies considered in this paper are defined
below, with the direction of positive power flow as per Fig. 1,
defined in Section 2.1.

� Metering topology 1:M1 andM2 operate in gross metering mode.
M3 is not installed. M1 measures and records the generation
profile gk�0 for all k, M2 measures and records the power flow
lk�bk�0 for all k.
� Metering topology 2: M3 operates in net metering mode. M1 and
M2 are not installed.

3.2. Financial policies

To calculate the energy bill for a single residential customer, we
require the measured power flows from the residential energy
system in Fig. 1, and the corresponding electricity prices. Our
definition of a financial policy (in $/kWh) formalizes the electricity
prices and includes incentives intended to influence customer en-
ergy utilization. Example incentives include time-of-use (TOU)
pricing, feed-in-tariffs and net metering [3,46]. Our definition of a
financial policy below is sufficiently general to include these in-
centives in addition to more sophisticated dynamic day-ahead
pricing rates [23,29,37].

Our definition of a financial policy requires an electricity billing
profile and an electricity compensation profile over [0,T], for each
installed meter in M . The direction of power flow associated with
electricity billing/compensation is defined with reference to the
direction of positive power flow that is specified at each meter
M2M . We denote electricity billing (in $/kWh) at meterM2M over
the period ((k�1)D,kD) by hbkðMÞfor all k2f1;…; sg, and define the
electricity billing profile over [0,T] at M as
hbðMÞ :¼ ½hb1ðMÞ;…; hbs ðMÞ�T2ℝs

�0. Likewise we denote the elec-
tricity compensation (in $/kWh) at meter M2M over the period
((k�1)D,kD) by hckðMÞfor all k2f1;…; sg, and define the electricity
compensation profile over [0,T] at M as
hcðMÞ :¼ ½hc1ðMÞ;…; hcsðMÞ�T2ℝs

�0.
In order to implement a financial policy, certain types of meters

are required in particular locations. For example a financial policy
may require the meter M1 (in Fig. 1), which records positive power
flows from the solar PV to node 1. For this meter the financial policy
will specify the electricity billing and compensation profiles hb(M1),
hc(M1), respectively. If the electricity billing (or compensation)
profile at meter M1 is defined by hbkðM1Þ ¼ 0 (or hckðM1Þ ¼ 0) for all
k2f1;…; sg, then it is sufficient that meter M1 operates in gross
metering mode. In this case the power flow to bemeasured is in the
same direction specified for electricity compensation (or billing).

We now define a financial policy over [0,T] by using the day
ahead electricity billing and compensation profiles at each installed
meter inM . An example financial policy is definedwith reference to
Fig. 1 for M¼{M1,M2,M3}. The direction of positive power flow at
meter M1 is defined by g (from the solar PV to node 1) and elec-
tricity is compensated in this direction hc(M1). The direction of
positive power flow at meter M2 is defined by l�b�0 (from node 1
to node 2) and electricity is billed in this direction hb(M2). The di-
rection of positive power flow at meterM3 is defined by p (from the
PCC to node 1) and electricity is billed in this direction hb(M3). For
each electricity compensation (or billing) profile hb(M) (or hc(M)),
there also exists an electricity billing (or compensation) profile
hc(M) (or hb(M)) for power flowing against the positive direction at
meter M2M .

The financial policies considered in this paper are defined with
reference to metering topologies 1 and 2 defined in Section 3.1. The
financial policy associated with metering topology 1 includes an
electricity compensation profile at meter M1 (for power flow from
the solar PV to node 1), and an electricity billing profile at meterM1
(for power flows in the reverse direction), represented by hc(M1)
and hb(M1) respectively; and an electricity compensation profile at
meterM2 (for power flow from node 2 to node 1), and an electricity
billing profile at meterM2 (for power flows from node 1 to node 2),
represented by hc(M2) and hb(M2) respectively. Furthermore,
hbkðM1Þ ¼ 0 and hckðM2Þ ¼ 0, for all k2f1;…; sg and hence it is
sufficient that meters M1 and M2 operate in gross metering mode,
as per the definition of metering topology 1.

The financial policy associated with metering topology 2 has an
electricity compensation profile at meter M3 (for power flow from
node 1 to PCC) and an electricity billing profile at meter M3 (for
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power flow from the PCC to node 1), represented by hc(M3) and
hb(M3) respectively. Table 1 summarizes the electricity billing and
compensation profiles for metering topologies 1 and 2.

To implement a gross feed-in tariff, we observe metering to-
pology 1 is sufficient. To implement a net feed-in tariff, or net
metering, we observe metering topology 2 is sufficient.

3.3. Energy bill

To define the energy bill for the residential energy system in
Fig. 1, we combine the financial policy (in $/kWh) with the
measured power flows defined in Section 2.1. To reduce the energy
bill when QP energy-shifting, we seek a weighting matrix H given a
fixed battery capacity C.

In what follows we define the energy bill (in $/day) in terms of
the respective financial policy associated with metering topologies
1 and 2 (Section 3.2). We assume the day-ahead billing and
compensation profiles in the respective financial policies are fixed
by the utility or regulatory body and available to the consumer.

In equation (6) we constrained the initial and final states of
charge of the battery to be equal. Consequently, we assume the cost
associated with charging the battery to c0 can be compensated for
with the remaining charge at the end of the day cs. Therefore, in
defining of the energy bill, we ignore the cost associated with
charging the battery to an initial state of charge.

To formalize the energy bill associated with metering topology
1, we select the electricity prices that correspond to measured
power flows at meters M1 and M2. That is, for the financial policy
relating to metering topology 1, we define sk(M1) and sk(M2) as
follows:

skðM1Þ ¼
(
hckðM1Þ; if gk � 0
hbkðM1Þ; if gk <0;

(18)

skðM2Þ ¼
�
hbkðM2Þ; if lk � bk � 0
hckðM2Þ; if lk � bk <0;

(19)

and denote sðM1Þ :¼ ½s1ðM1Þ;…; ssðM1Þ�T2ℝs
�0 and

sðM2Þ :¼ ½s1ðM2Þ;…; ssðM2Þ�T2ℝs
�0 over the period [0,T]. Recall

hk
b(M1)¼0 and hk

c(M2)¼0, for all k2f1;…; sg.
In order to minimize the energy bill associated with metering

topology 1, we choose the weighting matrix for a given battery
capacity with constraints (8) and (9) known and fixed as

H1 :¼ HðsðM1Þ; sðM2ÞÞ: (20)

Hence the choice of weighting matrix in the cost function (11) is
dependent on the implemented financial policy.

Having fixed H1 in equation (20), we define the residential en-
ergy bill associatedwithmetering topology 1, denoted bySC(H1) (in
$/day) by

SCðH1Þ :¼ D
�
ðl� bÞTsðM2Þ � gTsðM1Þ

�
: (21)

When the battery capacity C¼0, the energy bill defined in (21)
reduces to

S0 :¼ D
�
lThbðM2Þ � gThcðM1Þ

�
; (22)

since the battery charging/discharging capacity bk¼0 for all
k2f1;…; sg, rendering the selectable weights in H1 irrelevant. The
case where C¼0 also serves as a base-line energy bill, which we use
as a comparison when assessing the financial benefits of battery
storage.

Remark 2. The energy bill notation convention SC(H1) is simpli-
fied, and consistent with the suppression of functional dependence
described in Remark 1. That is, our notation reflects our primary
degrees of design flexibility, the battery capacity C and the
weighting matrix.

To formalize the energy bill associated with metering topology
2, we select the electricity prices that correspond to measured
power flows at meter M3. That is, we define sk(M3) in terms of the
financial policy as

skðM3Þ ¼
(
hbkðM3Þ; if pC

k ðhkÞ � 0
hckðM3Þ; if pC

k ðhkÞ<0;
(23)

and we denote sðM3Þ :¼ ½s1ðM3Þ;…; ssðM3Þ�T2ℝs
�0 over the period

[0,T]. In order to minimize the energy bill associated with metering
topology 2, we choose the weighting matrix for a given battery
capacity with constraints (2)e(4) known and fixed as

H2 :¼ HðsðM3ÞÞ: (24)

Having fixed H2 in (24), we define the energy bill associated
with the financial policy relating to metering topology 2 by

SCðH2Þ :¼ DpCðH2ÞTsðM3Þ; (25)

which reduces to the base-line energy bill for C¼0 given by

S0 :¼ Dðl� gÞTsðM3Þ; (26)

where p0¼l�g since the battery charging/discharging capacity
satisfies bk¼0 for all k2f1;…; sg.

4. Savings for a single customer

In this section we define the energy savings for the household
PV system depicted in Fig.1. The results in this section allow a single
customer to assess the cost-effectiveness of installing a battery of a
given size. Recall, this paper focuses on the operational energy
savings associated with QP energy-shifting and as such we omit the
capital cost of installing a battery.

4.1. Energy savings

To examine the effectiveness of QP energy-shifting for a given
size battery, we define the energy savings (in $/day). The energy
savings are denoted by JC(H) and defined by

JCðHÞ :¼ S0 � SCðHÞ: (27)

We recall from Section 3.3, the energy bill SC(H) is defined for a
particular financial policy and selection of weights in H, given load
and generation profiles l and g, a battery of a given size C, with
constraints (2)e(4) known and specified. When C¼0, S0 denotes
the base-line energy bill.

Given unique load and generation profiles for 365 consecutive
days and a battery of a given size C, with constraints (2)e(4) known

Table 1
Electricity billing and compensation profiles for metering topologies 1 and 2.

Meter Metering topology 1 Metering topology 2

Billing Compensation Billing Compensation

M1 hb (M1) ¼ 0 hc (M1)
M2 hb (M2) hc (M2) ¼ 0
M3 hb (M3) hc (M3)
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and specified, their exists a unique energy saving JC(H) for each of
the 365 days. We define the summation of these unique energy
savings by QC(H) in $/yr and label this summation the annual
savings. Thus when the annual savings are positive, there exists an
operational benefit to QP energy-shifting.

Hence QC(H)>0 implies the installation is operationally cost-
effective, QC(H)¼0 implies the installation is operationally cost-
neutral and QC(H)<0 implies no financial benefit for battery stor-
age for that given year.

4.2. Special case: zero energy savings

Consider the special case where there is a fixed price for elec-
tricity (in $/kWh) at all installed meters in M , irrespective of power
flow direction and time of day. Lemma 2 below demonstrates that
under these circumstances, there is no financial incentive for a
resident to install battery storage. That is, since the battery acts as
an energy time-shifter, the lack of differential pricing at any point in
time gives no incentive to energy time-shift.

Lemma 2. Fix h>0 and let the electricity billing and compensation
profiles in the financial policy satisfy the following for all M2M :

hbj ¼ hck ¼ h for all j; k2f1;…; sg; (28)

hb ¼ hc ¼ h1: (29)

Assume all meters M2M are installed such that all power
flowing to or from the grid is quantifiable (for example metering
topology 1 or 2). Then for all choices of battery capacity C and
weighting matrix H, the energy savings are JC(H)¼0.
Proof. Consider metering topology 2. Rearranging equation (3)
yields

c0 � cs ¼
Xs
k¼1

bkD: (30)

Recall from the definition of the time window T, we require D to
be positive (D > 0) and a constant. Combining the definition of D
with the constraint in equation (6) implies

Xs
k¼1

bk ¼ bT1 ¼ 0: (31)

Furthermore, definitions (14) and (15) imply

pCðH2Þ ¼ l� g � b: (32)

Additionally, substituting equations (28) and (29) into equation
(23) yields

sðM3Þ ¼ h1: (33)

Therefore, from equation (25) the energy bill is

SCðH2Þ ¼ DpCðH2ÞTsðM3Þ ¼ Dðl� g � bÞTh1
¼ Dðl� gÞTh1� DhbT1 ¼ Dðl� gÞTsðM3Þ ¼ S0;

where the final equality is defined in equation (26).
The energy savings (27) are then

JCðH2Þ ¼ S0 � SCðH2Þ ¼ 0: (34)

A similar calculation can be performed for other metering

topologies, provided the meters in M are installed such that all
power flowing to or from the grid is quantifiable.

5. Heuristic for selecting the weighting matrix

In this paper our objective is to maximize the daily opera-
tional savings that accrue to a single customers, while penalizing
large voltage swings observed in the distribution network
stemming from reverse power flow and peak load. We assume
peak electricity billing rates coincide with generation shortages
or peak grid demand and look to prioritize the minimization of
energy flow from the grid during these events, while penalizing
reverse power flow. To achieve our objective, we seek a
weighting matrix H in the QP for a single customer with battery
storage in the residential setting shown in Fig. 1. Given perfect
day-ahead load and generation forecasts, and battery constraints
(8) and (9), the HEM system computes the weighting matrix H
via a heuristic for each day-ahead. We define the heuristic in
what follows.

In Section 2.2, the minimization of expression (10) was pre-
sented as a constrained quadratic program (Lemma 1), where the
weights hk in H were selectable. In this section we consider the
specification of the matrix H that maximizes the annual savings,
while reducing the impact of the residential system on the grid. In
practice, the matrix H is difficult to obtain, as it depends on a va-
riety of factors including financial policies, metering topologies and
daily variations in load and generation profiles. To address this
problem we propose a greedy-search heuristic for obtaining a so-
called preferred H, which is in turn based upon a base-line
weighting matrix denoted by H0.

When selecting the weights in the preferred H, our rationale
is to increase base-line weights when electricity billing is high
and decrease base-line weights when electricity billing is low,
and to continue increasing/decreasing so long as the daily resi-
dential savings increase. This rational reduces network peak
loads without contributing to reverse power flow during the
peak pricing period, and increases operational savings that
accrue to customers.

The basic idea of the heuristic is to increase eachweight hk inH0,
as long as this increase leads to an increased energy saving in (27).
To mitigate against numerical difficulties with the solution of the
quadratic program in Lemma 1, we increase weights in H0 until a
maximum allowable value of hk is reached. To this end, weights in
H0 are scaled by the minimum cost and capped at a maximum
value. To cap the weights hk we introduce the following saturation
operation:

sath1ðhkÞ :¼
8<
:

1; if hk <1
hk; if 1 � hk � h
h; if hk >h;

(35)

where the lower bound is 1 in accordance with the definition of hk
in Section 2.2 and h>1 is fixed. The constant h is chosen to mitigate
against numerical difficulties in solving the QP in Lemma 1. In this
paper, we set h ¼ 1000:

To formalize the definition of the base-line weighting matrix, let

~hk :¼
X
M2M

hbkðMÞ; c k2f1;…; sg (36)

h+ :¼ min
k2f1;…;sg

~hk; (37)

and define the base-line weighting matrix H0 as
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H0 :¼ diag
h
Hð1Þ0 ;…;HðkÞ0 ;…;HðsÞ0

i
; (38)

where HðkÞ0 :¼ sath1
	
~hk=h

+



Given H0, the proposed heuristic requires the function for en-
ergy savings Jð,Þ defined in (27). Recall the energy savings func-
tionJð,Þ requires the constraints and solution to the QP in Lemma
1 and the energy bill Sð,Þ pertaining to a given metering topology
and financial policy as defined in Section 3. To simplify the notation,
we useJð,Þ rather thanJC(H) to indicate that the battery capacity
C is fixed.

The main loop in the heuristic below (lines 6e19), doubles
weights in H0 progressively, from the largest to the smallest
element in H0. If there exist multiple elements in H0 with the same
magnitude, we double the multiple elements concurrently. The set
of live indices ~s keeps track of the indices in H0 that are yet to be
increased, and I~s denotes an s-by-s matrix in which I~sj;j ¼ 1 if j2~s
and zero otherwise.

6. Application of QP energy-shifting

We analyzed measured load and generation profiles from July
1st 2010 to the 30th of June 2011, for each of 300 randomly selected
low voltage customers located in an Australian distribution
network, operated by Ausgrid. The Ausgrid distribution network
covers 22,275 km2 and includes load centers in Sydney and regional
New South Wales.

The load and generation profiles l and g for each of the 300
customers are defined with T¼24 h, D¼30 minutes, and s¼T/D¼48,
for each day in the 365 days.

We eliminated customers with a maximum load or PV genera-
tion less than 5 W on any day of the year (lk<0.005 or gk<0.005 for
all k 2f1;…; sg), leaving 145 of the original 300 customers. We
refer to this set of 145 customers as the ensemble.

When QP energy-shifting, the annual savings for each customer
in the ensemble are dependent on a variety of factors and we
investigate four of the most important factors in what follows. In
Section 6.2 we investigate the influence of daily variations in the
load and generation profiles on savings for particular customers in
the ensemble. In Section 6.3 we compare annual savings for
different metering topologies. In Section 6.4 we compare annual
savings with and without the preferred H. In Section 6.5 we
investigate the influence of battery capacity on annual savings. The
computational timewhen QP energy-shifting (including the time to
find the preferred H) on each day for each ensemble member is on
average 0.422 s with an Intel i7-2630QM processor.

6.1. Simulation parameters

In the following we use the heuristic to find the H matrix when
QP energy-shifting, except as specified in Section 6.4. To calculate
the annual savings for the ensemble when QP energy-shifting, we
fix the battery capacity at 10 kWh, except in Section 6.5 where we
vary the battery capacity within the range 0 kWh � C �30 kWh. In
all cases, the remaining battery constraints (2)e(4) are chosen as
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c0¼0.5 C, and B ¼ �B ¼ 5kW. We also fix the length-s billing and
compensation profiles (each given in $/kWh) for metering topology
1 as follows:

hbðM1Þ ¼ hcðM2Þ ¼ ½0;…;0�T ;

hcðM1Þ ¼ ½0:4;…;0:4�T ;

hbðM2Þ ¼
h
…; hbk ;…

iT
;

where hb1�14 ¼ 0:03; hb15�28 ¼ 0:06; hb29�40 ¼ 0:3; hb41�44 ¼ 0:06;
and hb45�48 ¼ 0:03. The non-zero profiles are shown in Fig. 3(a).

For metering topology 2, the length-s compensation and billing
profiles (in $/kWh) are again fixed and given by

hcðM3Þ ¼ ½0:4;…;0:4�T ;

hbðM3Þ ¼
h
…; hbk ;…

iT
;

such that hb(M3)¼hb(M2). The non-zero profiles are shown in
Fig. 3(b).

For both metering topologies in Fig. 3 we describe electricity
billing from 10pm to 7am at the rate of $0.03/kWh as an off-peak
pricing period, electricity billing from 7am to 2pm and again from
8pm to 10 pm at the rate of $0.06/kWh as a shoulder pricing period
and electricity billing from 2pm to 8pm at the rate of $0.30/kWh as
a peak pricing period.

For metering topology 1 in Fig. 3 we describe electricity
compensation hc(M1) as a gross feed-in tariff. For metering topol-
ogy 2 in Fig. 3 we describe electricity compensation hc(M3) as a net
feed-in tariff.

6.2. Influence of load and generation profiles

In this section we identify typical load and generation profiles
that result in either a positive or negative operational saving when
QP energy-shifting under metering topology 1. To do this we
compare daily energy savings for two customers in the ensemble.
The selected two customers are chosen with significant differences

in their respective load and generation profiles (l and g). The two
representative customers are denoted Customer 75 and Customer
200.

Fig. 4 illustrates the significant differences in the respective load
and generation profiles for customers 75 and 200. In Fig. 4(a) we
observe Customer 75 consumed most of its energy during the off-
peak pricing period between 10pm and 7am. Meanwhile the solar
PV unit delivered energy from 7am to 7:30pm and was in excess of
the residential energy demand from 8am to 7:30pm. Consequently,
Customer 75 delivered energy to the grid from 8am to 7:30pm on
the 9th of January 2011.

In Fig. 4(b) we observe Customer 200 consumed a significant
proportion of its energy during the peak pricing period (2pm-8pm)
and very little energy during the off-peak pricing period (10pm e

7am). In Fig. 4(b) we also observe the generation profile is less than
the load profile for the entire day (gk<lk for all k2f1;…; sg).

Fig. 3. Non-zero billing and compensation profiles for metering topologies 1 and 2.

Fig. 4. Representative load and generation profiles for customers 75 and 200.

Fig. 5. The battery SOC for customers 75 and 200 when using QP energy-shifting on
the 9th of January 2011 and the 5th of July 2010, respectively.
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Consequently, there was no energy delivered to the grid by
Customer 200 on the 5th of July 2010.

For both customers 75 and 200, given a financial policy associ-
ated with metering topology 1 and simulation parameters defined
in Section 6.1, we calculate the daily energy savings given a 10 kWh
battery. From these daily energy savings we find Customer 75
would have lost $2.68 on the 9th of January 2011 and Customer 200
would have saved $2.70 on the 5th of July 2010 by using QP energy-
shifting.

To understand why QP energy-shifting would save Customer
200 $2.70, while costing Customer 75 $2.68, given the load and
generation profiles in Fig. 4, we compare the respective battery
states of charge. In Fig. 5(a) we observe the battery discharges
mostly during the off-peak pricing period when Customer 75
consumed most of its energy and charges during the peak pricing
period rather than the shoulder pricing period when PV generation
was high and load low due to the weightings imposed via the
heuristic. Consequently the cost of charging the battery is not offset
by the cost of discharging the battery for Customer 75 on the 9th of
January 2011.

In Fig. 5(b) we observe the battery discharges mostly during the
peak pricing period when the customer consumed most of its en-
ergy and charges during the off-peak pricing period as well as when
the solar PV generated energy. Therefore the cost of charging the
battery is offset by the cost of discharging the battery for Customer
200 on the 5th of July 2010.

On each day from the 1st of July 2010 to the 30th of June 2011we
calculated the daily energy savings for customers 75 and 200. Fig. 6
illustrates the distribution of these daily savings. In Fig. 6(a) we
observe QP energy-shifting results in Customer 75 losing money
over the course of a year, even though some days provide savings.
This loss of money is attributed to load and generation profiles that
caused the battery to charge during peak pricing periods and
discharge during off-peak pricing periods, consistent with our ob-
servations in Fig. 5(a).

In Fig. 6(b) we observe QP energy-shifting results in Customer
200 savingmoney over the course of a year. This saving is attributed
to load and generation profiles that cause the battery to charge

during the off-peak pricing periods and discharge during the peak
pricing periods, consistent with our observations in Fig. 5(b).

Consequently, given metering topology 1, the daily cost of
charging a given battery must be offset by the daily cost of dis-
charging a given battery for a customer to reap the benefits of QP
energy-shifting. Therefore, given the financial policy associated
with metering topology 1 described in Section 6.1, customers that
consume most of their energy during the off-peak pricing period
and generate more energy then they consume, will not financially
benefit from QP energy-shifting. On the other hand, those who
consume most of their energy during the peak pricing period and
generate less energy then they consume, will financially benefit
from QP-energy shifting.

6.3. Influence of metering topologies

For each customer in the ensemble, we now calculate and
compare the annual savings associated with QP energy-shifting
given the financial policy associated with either metering topol-
ogy 1 or 2 as presented in Section 3.1. For each customer, the annual
savings are again calculated for a 10 kWh battery and in all cases,
the simulation parameters are as defined in Section 6.1.

Fig. 7 illustrates the distribution of annual savings for all cus-
tomers in the ensemble under two metering topologies. In Fig. 7(a)
we observe metering topology 1 saves the ensemble on average
$350/yr, however nine customers lose money, including Customer
75. In Fig. 7(b) we observe metering topology 2 saves the ensemble
on average $100/yr, however fifty customers lose money, including
Customer 75. Hence some customers do not benefit from QP
energy-shifting, irrespective of the metering topology.

We again visit the representative load and generation profiles
for Customer 75 in Fig. 4(a) to understand the underlying principles
that result in Customer 75 not benefiting from QP energy-shifting,
given metering topology 2. In Fig. 4(a) we observed Customer 75
generated energy and delivered most of this energy to the grid and
was compensated for this at $0.40/kWh. However if Customer 75
employed QP energy-shifting, the generated energy would instead
charge a battery when in excess of the load, leading to a loss in
compensation at $0.40/kWh. Given the financial policy relating to

Fig. 6. Distribution of daily saving resulting form QP energy-shifting for customers 75
and 200.

Fig. 7. Annual savings distribution for the ensemble resulting from metering topol-
ogies 1 and 2.
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metering topology 2, it is not possible for this customer to recoup
this compensation loss by discharging the battery, as the maximum
billing rate is $0.30/kWh. Therefore, customers that would ordi-
narily deliver energy to the grid, may not profit from QP energy-
shifting when electricity compensation is in excess of electricity
billing.

6.4. Influence of the selection of H

In this section we verify the heuristic proposed in Section 5. The
heuristic finds a matrix H that increases the annual savings, with
comparison to the base-line H (denoted H0). The results in this
section are based on the battery constraints and financial policies as
per Section 6.1.

For each customer in the ensemble we calculate the annual
savings when QP energy-shifting using both the preferredH andH0
given the financial policies associated with metering topologies 1
and 2. We then average the annual savings of the ensemble and
label this average the mean annual savings (in $/yr).

We record themean annual savings for both the preferredH and
H0 in Table 2. From this table we observe the preferred H increases
mean annual savings when QP energy-shifting, irrespective of the
metering topology. Hence the heuristic given in Section 5 suc-
cessfully increases the mean annual savings for the ensemble, with
comparison to H0.

6.5. Influence of the battery capacity

To assess the influence of battery capacity (in kWh) on resi-
dential annual savings when QP energy-shifting we consider again
customers 75 and 200 from the ensemble. For these customers we
vary the battery capacity (C) given the set of battery capacities (in
kWh) C¼{0,0.1,1,2,4,6,8,10,15,20,30} and plot the results in Fig. 8.

In Fig. 8 we observe that an increase in the battery capacity
results in an increase in financial losses for Customer 75. In

comparison, an increase in battery capacity results in an increase in
annual savings for Customer 200. Furthermore, the increase in
annual savings for Customer 200 rapidly approaches an asymptotic
value with a 30 kWh battery providing minimal additional savings
over a 15 kWh battery. Consequently, not all customers benefit
from battery storage and increasing the size of the battery does not
necessarily increase the annual savings for a given customer.

Considering the subset of customers who do financially benefit
from QP energy-shifting, if we know the capital cost of installing a
battery of a given size, with constraints known and specified, Fig. 8
may be useful in identifying the most cost-effective battery ca-
pacity. Furthermore, given the capital cost of installing a battery, we
expect there also exists a critical annual saving where increases in
battery capacity may no longer be cost-effective.

7. Conclusions

In this paper we have presented a QP-based algorithm for day-
ahead scheduling of residential battery storage co-located with
solar PV. The QP-based algorithm is formulated to balance two
objectives. The first objective is to minimize the impact of the
residential system on the grid, by reducing the network peak de-
mand and non-compliant voltage deviations associated with
reverse power flow. The second objective is to increase the daily
operational savings that accrue to customers, by time-shifting
residential load from peak pricing periods to off-peak pricing pe-
riods. In particular, we balance the reduction of load during during
peak pricing periods with penalties for reverse power flow during
the same period so that voltage rise associated with solar PV is not
simply time-shifted to the peak pricing periods. Furthermore, our
proposed framework allows for a variety of financial incentives and
their required metering topologies.

Our QP-based algorithm requires a user-specified weighting
matrix, H. We have presented a heuristic approach to the specifi-
cation of H. Other approaches are possible, and may provide
improved customer benefits.

In the context of feed-in tariffs we assessed the customer benefit
of QP energy-shifting by using measured load and generation data
from145 residential customers located in an Australian distribution
network. In assessing the potential benefit for each of these cus-
tomers, we observed that most, but not all, customers see opera-
tional savings. Customers who are offered incentives to generate
more electricity then they consume, with peak load falling outside
the peak and shoulder pricing periods, are included in the category
of negative operational savings. Further work is needed to more
completely characterize suitable financial policies, metering to-
pologies, and battery size with respect to financial benefits of QP
energy-shifting for customers who observed negative operational
savings.
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4

Assessing the benefits of net
metering

In Chapter 3 we presented a quadratic program (QP)-based algorithm for the day-ahead scheduling

of residential battery storage co-located with solar PV, in the context of PV incentives such as

feed-in tariffs. A greedy-search heuristic that selected the key design parameters in the QP-based

scheduling algorithm was proposed to improve operational savings that accrue to customers.

Chapter 4 includes the paper titled Scheduling residential battery storage with solar PV: Assessing

the benefits of net metering. One of the key contributions of this paper is a day-ahead linear

program (LP)-based scheduling algorithm that maximizes the operational savings that accrue to

residential PV customers with battery storage, in the context of net metering. By means of a

case study, we evaluate and benchmark the LP-based approach against the QP-based approach

as defined in Chapter 3. Our framework for defining a residential energy system is consistent

with Chapter 3, with the exception of some notational changes made to improve the clarity and

presentation of the published manuscript.
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a b s t r a c t

In this paper we propose a linear program (LP)-based algorithm to schedule battery storage co-located
with residential solar photovoltaics (PV), when excess generation is compensated via net metering.
While the objective of this LP-based approach is to maximize the operational savings that accrue to cus-
tomers, an undesirable consequence to the utility is reverse power flow during the peak pricing period.
We show in this paper that it is possible to balance the objective of the utility in limiting reverse power
flow, with the customer objective of increasing operational savings, in the context of net metering. To bal-
ance the specified utility and customer objectives we employ a quadratic program (QP)-based algorithm,
which explicitly penalizes reverse power flow. To complete our assessment of net metering, both the
LP-based and QP-based scheduling algorithms are applied to measured load and generation data from
145 residential customers located in an Australian distribution network. The results of this case study
confirm the absence of reverse power flow when all customers employ a QP-based battery schedule, with
the majority of customers exhibiting operational savings.

Crown Copyright � 2015 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Government incentives, renewable energy rebates and concerns
for sustainable energy growth have led to the rapid uptake of res-
idential solar photovoltaics (PV), a trend expected to continue over
the next decade [1,2]. However, the daily and seasonal variability
of the solar resource, in addition to intermittency arising from
moving cloud cover, poses challenges for distributors in maintain-
ing system voltages within operational limits [3,4]. Moreover, dis-
tribution grids are typically designed for one way power from high
voltage substations to low voltage customers, therefore, a signifi-
cant penetration of residential PV potentially degrades the effec-
tiveness of existing voltage control and protection schemes [5,6].

As residential PV penetration increases, the management of sys-
tem voltages within operational limits becomes increasingly chal-
lenging. For example, if PV generation exceeds both local demand
at the point of common coupling (PCC), and that of the down-
stream feeder, the excess PV generation is pushed upstream creat-
ing voltage rise [7–9]. Furthermore, if a passing cloud results in a
loss of PV generation along a feeder, the voltage across the feeder
will dip [10,11]. When these voltage deviations either exceed the
upper voltage limit, or fall below the lower voltage limit, solutions
are needed to mitigate the system non-compliance [12,13].

There are a number of emerging approaches to overcome
non-compliant voltage deviations arising from the intermittency
and variability of solar PV, with applicable incentives, mandates
and regulation driving the solutions [14]. Some of these
approaches include energy storage [15,16], direct load control
[17], price-responsive load control [18], active PV generation
curtailment [19], and enhanced PV inverter control to manage real
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and reactive power output [20,21]. Moreover, Kabir er al. [22]
shows that reactive compensation from PV inverters alone is not
always sufficient to maintain acceptable voltage profiles along a
distribution feeder. Different incentives driving these approaches
include dynamic day-ahead electricity tariffs [23–25], reductions
in appliance-specific electricity billing [17,26], standards curbing
PV production [27], and energy storage mandates such as those
in California [28]. Depending on the incentives and regulatory
environment, a combination if not all of these approaches are suit-
able demand management options for distribution operators faced
with significant PV penetration.

Several authors have investigated co-locating battery storage
with solar PV with a focus on reducing network peak demand
[29–36], leading to battery schedules that either assist or exacer-
bate voltage rise associated with reverse power flow when invert-
ers operate at unity power factor [21,35]. The reduction of network
peak demand is incorporated into a linear program in [29], where
the energy flowing from the point of common coupling (PCC) to the
customer is minimized when residential load exceeds residential
PV production. Otherwise the battery is scheduled in [29] to charge
during the off-peak pricing period, and discharge during the peak
pricing period, with no limit on reverse power flow (i.e., the power
delivered to the grid). Consequently, battery scheduling in [29]
potentially induces voltage rise at the PCC. The reduction of net-
work peak demand is also incorporated into an optimization prob-
lem in [30], where the objective function includes financial
incentives for residents to deliver energy to the grid when the pur-
chase cost of electricity is high. Hence, when interconnected cus-
tomers in close proximity minimize the objective function in
[30], large voltage swings associated with reverse power flow
potentially arise due to the battery scheduling.

In contrast, peak demand and reverse power flow is reduced by
solving the optimization problems in [31,32], where the objective
functions eliminate residential subsidies for electricity delivered
to the grid and include payments for electricity received from the
grid. Thus, the optimization problems in [31,32] potentially reduce
voltage rise associated with reverse power flow. The optimization
problem in [33] also removes incentives for reverse power flow
associated with battery scheduling, while permitting incentives
encouraging solar PV uptake. In addition, the optimization problem
in [33] includes residential payments for electricity received from
the grid. Consequently, the optimization problem in [33] leads to
reductions in both peak demand and reverse power flow, poten-
tially mitigating voltage rise. Another method for reducing both
peak demand and reverse power flow is incorporated into the opti-
mization problem in [34], where a sophisticated dynamic pricing
environment provides additional incentives for customers to
smooth their day-ahead energy consumption. Hence, the optimiza-
tion problem in [34] potentially abates voltage rise associated with
reverse power flow.

Increasing the accuracy of load and generation forecasts in
[30,29,31–34] will improve battery scheduling, leading to addi-
tional savings for customers [34], and further reductions in peak
demand [33]. Approaches to improving PV generation forecasts
are considered in [37]. Incorporating continuous updates in PV
generation forecasts when charging or discharging the battery is
considered in [29,38], where the authors implement Receding
Horizon Optimization (RHO). Likewise, the receding horizon
approach in [29] incorporates updates in load forecasts.
Moreover, RHO together with real time prediction of weather
forecasts are implemented in [39] to optimally operate a hybrid
renewable energy system consisting of solar, wind, diesel genera-
tors, and battery storage, with the purpose of supporting the load
of a single residential household.

In this paper we present a linear programming (LP)-based
approach to designing day-ahead battery charge and discharge

schedules when any generation in excess of residential load is
compensated by the electricity retailer via net metering
[30,40,41]. In the LP-based approach we consider two customer
objectives: the first is to reduce the daily payments for electricity
received from the grid; and the second is to increase daily profits
arising from the delivery of electricity to the grid. These two
customer objectives are combined in the day-ahead operational
savings, which we maximize. In the context of net metering, we
also show the operational savings pertaining to the LP-based bat-
tery charge and discharge schedules are independent of any power
flows related to load and PV generation. Hence the LP-based
approach that maximizes the day-ahead operational savings does
not require day-ahead forecasts of load and PV generation.
Further, the LP-based algorithm presented in this paper did not
previously appear in our earlier work [42,43], or to the best of
our knowledge elsewhere.

An undesirable consequence of the battery schedule maximiz-
ing operational savings in this LP-based approach is reverse power
flow during peak pricing periods. More specifically, the financial
policy of net metering together with time-of-use electricity prices
incentivize customers to discharge battery storage during the peak
pricing period. To mitigate against non-compliant voltage devia-
tions arising from reverse power flow, we consider a quadratic pro-
gram (QP)-based scheduling algorithm, first presented in [42,43].
Our earlier work in [42,43] assessed the customer benefit of the
QP-based algorithm for a range of metering topologies, in the con-
text of feed-in tariffs (FiTs). In the present paper we consider both
the customer and utility benefits of the QP-based scheduling algo-
rithm, in the context of net metering. Furthermore, the LP-based
and QP-based results in this paper have not previously appeared
in [42,43], or elsewhere.

In the present paper we demonstrate that the QP-based
scheduling algorithm with net metering effectively balances the
customer’s objective of increasing the daily operational savings
with the distributor’s need to reduce reverse power flow that leads
to non-compliant voltage rise. We anticipate load flow analysis will
assist distributors in identifying non-compliant voltage rise ahead
of time, so that the QP-based scheduling algorithm may be imple-
mented before the expected voltage rise occurs. Implicit in our
approach is the expectation that inverters operate at unity power
factor, and electricity prices correspond to energy purchased by
or from the resident.

To implement our approach each residential customer requires
an energy management system that (1) coordinates with Advanced
Metering Infrastructure (AMI) to receive day-ahead prices for
energy delivered to and from the grid; (2) runs
optimization-based algorithms daily; and (3) schedules battery
storage in the day-ahead. Additionally, if implementing the
QP-based algorithm, the energy management system will forecast
the day-ahead power-flows of residential load and PV generation.
In this paper, for the purpose of implementing the QP-based algo-
rithm, we assume the day-ahead forecasts of residential load and
PV generation are known and error-free.

Implicit in our approach is the expectation that global invest-
ment and government mandates will drive both technology
improvements and economies of scale for battery storage as has
happened with solar PV [28,44–46]. Therefore we do not explicitly
consider the capital cost of purchasing a battery, rooftop solar pan-
els, and the associated cost of inverters. Instead we focus on
increasing the operational savings that accrue to a resident when
scheduling a battery. Furthermore, we employ a deliberately sim-
plified battery model to assess the maximum operational savings
when net metering, which may be extended for more specific bat-
tery technologies. For example, battery storage combined with an
ultra-capacitor is expected to assist in increasing the battery life-
time [47].
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This paper is organized as follows. In Section 2 we define the
energy bill and operational savings associated with the measured
power flows illustrated in Fig. 1. To increase the operational sav-
ings, algorithms for finding the preferred rate to charge and dis-
charge a battery are introduced in Section 3. In Section 4 the
algorithms are implemented and evaluated given real-world data
from an Australian electricity distributor.

1.1. Notation

Let Rs denote s-dimensional vectors of real numbers and Rs
P0

s-dimensional vectors with all non-negative components where,
as usual, R1 ¼ R. I denotes the s-by-s identity matrix and 1 2 Rs

P0

denotes the all-1s column vector of length s. 0 denotes an
all-zero matrix, or an all-zero column vector, where the
context will make clear the dimension intended, and T ¼ ½tij�
denotes the s-by-s matrix satisfying tij ¼ 1 for i P j and tij ¼ 0
elsewhere.

2. Problem formulation

In this section we define a single residential customer’s energy
bill and associated operational savings when scheduling a battery
in the day-ahead, considering the network topology depicted in
Fig. 1. We include detailed definitions of electricity prices and
power flows to show that the operational savings when
net-metering are independent of any power flows related to load
and PV generation.

2.1. Definitions

Fig. 1 illustrates the topology of the system under consideration,
where bi-directional meter M measures the power flow x2ðkÞ. By
combining the power flow x2ðkÞ with prices for buying and selling
electricity, we can determine if a resident will incur an energy bill
or be compensated for excess generation. We represent electricity
prices by the vectors gb (the price at which a customer buys elec-
tricity) and gc (the price at which a customer is compensated for
supplying electricity to the grid) in Fig. 1.

In Fig. 1 the measured power flow (in kW) over the kth interval
of length D is denoted by x2ðkÞ. To represent all measured power
flows over a time window ½0; T� we define a vector of length s,
where s is the number of time intervals of length D, and T ¼ sD

(in hours) is the time window of interest. We define the grid profile

over the period ½0; T� by x2 :¼ ½x2ð1Þ; . . . ; x2ðsÞ�T 2 Rs, where by
convention we represent the average power flowing from (to)
the grid to (from) the energy system over the period
ððk� 1ÞD; kDÞ by x2ðkÞ > 0ðx2ðkÞ < 0Þ for all k 2 1; . . . ; sf g. In this
paper we generally consider T ¼ 24 h and D ¼ 1=2 h (30 min),
which implies s ¼ 48. Other choices are certainly possible, subject
only to commensurability of T;D and s.

The average power x2ðkÞ (in kW) supplied by (or to) the grid, is
billed (or compensated), according to the financial policy associated
with meter M. To define the financial policy we denote electricity
billing (in $/kWh) at meter M over the period ððk� 1ÞD; kDÞ by
gbðkÞ for all k 2 1; . . . ; sf g, and define the electricity billing profile

over ½0; T� by gb :¼ ½gbð1Þ; . . . ;gbðsÞ�T 2 Rs
P0. Likewise, we denote

electricity compensation (in $/kWh) at meter M over the period
ððk� 1ÞD; kDÞ by gcðkÞ for all k 2 1; . . . ; sf g, and define the electric-
ity compensation profile over ½0; T� by

gc :¼ ½gcð1Þ; . . . ;gcðsÞ�T 2 Rs
P0. Thus, a financial policy is defined

by the day-ahead electricity billing profile applied when power
flows in the direction x2ðkÞ > 0 (from the PCC to node 1), and the
day-ahead electricity compensation profile applied when power
flows in the reverse direction (x2ðkÞ < 0).

In this paper our focus is on a financial policy of net metering
defined by a resident being billed at the same rate as they are com-
pensated for excess generation [40,41], i.e., gbðkÞ ¼ gcðkÞ for all
k 2 f1; . . . ; sg, irrespective of the direction of x2ðkÞ. We denote the
financial policy of net metering by g 2 Rs

P0 where

g ¼ gb ¼ gc: ð1Þ
The remaining power flows represented in Fig. 1 are defined as fol-
lows. We represent the average power delivered to the residential
load (in kW) over the period ððk� 1ÞD; kDÞ by
lðkÞ for all k 2 1; . . . ; sf g, and define the load profile over ½0; T� as

l :¼ ½lð1Þ; . . . ; lðsÞ�T 2 Rs
P0. Likewise we represent the average PV

generation (kW) over the period ððk� 1ÞD; kDÞ by
gðkÞ for all k 2 1; . . . ; sf g, and define the generation profile over
½0; T� as g :¼ ½gð1Þ; . . . ; gðsÞ�T 2 Rs

P0. In this paper, we assume the
day-ahead load and generation profiles are known and perfect.

We represent the average power (kW) delivered from (or to)
the battery over the period ððk� 1ÞD; kDÞ by x1ðkÞ > 0 (or
x1ðkÞ < 0Þ for all k 2 1; . . . ; sf g, and define the battery profile over
½0; T� as x1 :¼ ½x1ð1Þ; . . . ; x1ðsÞ�T 2 Rs. By convention we represent
charging (discharging) of the battery by x1ðkÞ < 0ðx1ðkÞ > 0Þ,
where x1ðkÞ is a linear function of a fixed and known battery
voltage and the respective input (or output) battery
current. The linear relationship between the battery charge/
discharge power and the charge/discharge current is described
in [48].

From the configuration of the residential energy system in
Fig. 1, we observe that the power balance equation

x2ðkÞ ¼ lðkÞ � gðkÞ � x1ðkÞ ð2Þ
must hold for all k 2 1; . . . ; sf g.

In the absence of a battery in Fig. 1 the measured power flow at
meter M is denoted by ~x2ðkÞ, and the power balance equation
reduces to

~x2ðkÞ ¼ lðkÞ � gðkÞ for all k 2 1; . . . ; sf g; ð3Þ
since the battery charging/discharging power x1ðkÞ ¼ 0 for all
k 2 1; . . . ; sf g. We denote the grid profile for the case in (3) by the
baseline grid profile, defined as

~x2 :¼ ~x2ð1Þ; . . . ; ~x2ðsÞ½ �T : ð4Þ

Fig. 1. Residential network illustrating the direction of positive power flows and
financial incentives to energy time-shift. Arrows associated with gðkÞ; lðkÞ; x1ðkÞ and
x2ðkÞ illustrate the assumed direction of positive power flow. Financial incentives
for meter M are represented by vectors gb and gc (in $/kWh), in which arrows
illustrate the direction of power flow relevant for gb and gc .
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2.2. Battery constraints

The inclusion of the battery in Fig. 1 leads to additional con-
straints, which we now detail. To capture the limited ‘‘charg-
ing/discharging power’’ of the battery, we constrain x1 by

B1 6 x1 6 B1; ð5Þ
where B 2 R60 and B 2 RP0 reflect a ‘‘charge/discharge’’ current lim-
itation in the battery [48].

Given the battery profile x1, the state of charge of the battery (in
kWh) at time kD is denoted by vðkÞ where

vðkÞ :¼ vð0Þ �
Xk

j¼1

x1ðjÞD for all k 2 1; . . . ; sf g; ð6Þ

and vð0Þ denotes the initial state of charge of the battery. We rep-
resent the state of charge profile by v :¼ ½vð0Þ; . . . ;vðsÞ�T 2 Rsþ1.
For lead-acid batteries, more complicated state of charge models
have been developed in [30,33,49].

We represent the battery capacity (in kWh) by C 2 RP0, and it
necessarily follows that the state of charge profile is constrained by

0 6 v 6 C
1
1

� �
: ð7Þ

For a fixed initial state of charge satisfying 0 6 vð0Þ 6 C, we define
C :¼ ðvð0Þ=DÞ1; and C :¼ ð1=DÞðC � vð0ÞÞ1, and rewrite the bat-
tery constraints (6) and (7) as

�C 6 �Tx1 6 C: ð8Þ
In this paper, we optimize a battery profile over a single day. To
assess the benefits of net metering, we perform this optimization
over consecutive days. To account for battery aging, we may reduce
the battery capacity C on each consecutive day. To avoid an
energy-shifting bias in our results, we insist that the state of charge
of the battery at the end of a day is the same as the state of charge of
the battery at the beginning of the day, i.e.,

vðsÞ ¼ vð0Þ; ð9Þ
where vðsÞ is the final state of charge at time sD. In particular, con-
straint (9) ensures the battery energy-shifts across a day, such that
no additional charge is expended by the battery or stored at the
completion of each day [42].

Let A1 2 R4s�s, and b1 2 R4s be defined by

A1 :¼

I
�I
T
�T

26664
37775; b1 :¼ B1T B1T CT CT

� �T
: ð10Þ

With the above as background, we substitute Eq. (10) into Eqs. (5)
and (8), and Eq. (9) into (6), to succinctly write the battery con-
straints as

A1x1 6 b1; ð11Þ
1T x1 ¼ 0: ð12Þ
In what follows, we assess the annual operational benefits pertain-
ing to battery storage by optimizing a battery profile x1 subject to
constraints (11) and (12), one day at a time for 365 consecutive
days, where vð0Þ is known and fixed. More specifically, in the
simulations that follow the battery constraints in (11) and (12)
include a battery capacity limit of C ¼ 10 kWh, and an initial state
of charge of vð0Þ ¼ 5 kWh. The 10 kWh battery capacity is
consistent with the Tesla Powerwall unit available to customers
in the United States [50]. In the illustrative example presented

in Section 3.2 we include a battery charge/discharge limit of
B ¼ �B ¼ 2 kW, consistent with the continuous power limit of the
Tesla Powerwall [50]. In Section 4 we include a charging/discharg-
ing limit of B ¼ �B ¼ 5 kW, which would require a specially
purposed power outlet rather than a General Purpose Outlet
(GPO) at the residential premises. We anticipate 5 kW power out-
lets will be available to residential customers with electric vehicles
in the near future.

2.3. Energy bill

To define the energy bill for the residential energy system in
Fig. 1, we combine the relevant electricity prices (in $/kWh) with
measured power flows (in kW). In Section 2.1 we defined
day-ahead electricity prices in terms of the financial policy applied
at meter M. We assume the day ahead billing and compensation
profiles in the financial policy are fixed by the utility or regulatory
body, and are available to the consumer.

In defining the daily residential energy bill, we ignore the cost
associated with charging the battery to an initial state of charge
vð0Þ, assuming the final state of charge vðsÞ will provide adequate
compensation, cf. (9).

We now define the energy bill associated with the financial pol-
icy of net metering, relating to meter M by

R :¼ DgT x2; ð13Þ
which, by (3), reduces to the baseline energy bill for C ¼ 0 defined aseR :¼ DgT~x2 ¼ DgTðl� gÞ: ð14Þ

2.4. Operational savings

The operational savings (in $/day) allow us to examine the effec-
tiveness of scheduling a battery. We define the operational savings
W as the difference between the energy bills obtained with and
without a battery as follows:

W :¼ eR � R: ð15Þ
We recall from Section 2.3 the energy bill R is defined for a partic-
ular financial policy of net metering, given load and generation pro-
files l and g, a battery of a given size C, with constraints in (11) and
(12) known and specified.

For a financial policy of net metering (1) the following Lemma
quantifies the operational savings in terms of battery profile x1

and demonstrates that the operational savings are independent
of load and generation forecasts.

Lemma 1. Consider a residential energy network employing a
financial policy of net metering as defined in Eq. (1), where
g 2 Rs

P0 is assumed fixed and known. Let x1 2 Rs represent the
battery profile over ½0; T� where T ¼ sD. Then the operational savings
are given by

W ¼ DgT x1: ð16Þ

Proof. Substituting the power balance equation in (2) into the
energy bill defined in (13) yields

R ¼ DgT x2 ¼ DgTðl� g � x1Þ ¼ DgT~x2 � DgT x1;

and with (15) we obtain

W ¼ eR � R ¼ DgT~x2 � DgT~x2 � DgT x1
� � ¼ DgT x1:

h
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Remark 1. If the price of electricity is constant then there exists
a 2 R>0 such that g ¼ a1, and the operational savings in Eq. (16)
are reduced to $0 [42, Lemma 2].

To investigate the longer term benefits of net metering, we sum
the daily operational savings over a year [32,42]. We define the
summation of each daily operational savings over 365 days in
$/yr as the annual savings. Thus, when the annual savings are
positive, there exists an operational benefit to scheduling a battery
and when the annual savings are negative there is an operational
cost to scheduling a battery.

Through we do not do so in this paper, the general approach
described above may be extended in two useful ways. First, the
battery capacity C, in Eq. (7) can be reduced by a small amount
each day to account for battery aging. Second, the electricity prices,
g, can be adjusted daily to account for generation shortages or net-
work constraints.

3. Algorithms for scheduling a battery

In this section we present two approaches for scheduling a bat-
tery in a residential energy network given a financial policy of net
metering (1). The first approach maximizes the operational savings
in (16). The second approach aims to reduce the impact of the res-
idential energy system on the grid, where priority is given to the
reduction of energy flowing to and from the grid during the peak
pricing period.

3.1. Maximizing residential savings

To maximize the operational savings in (16) we require the
day-ahead net metering financial policy (1) and the battery con-
straints (11) and (12). Lemma 1 indicates that the battery profile
that maximizes the operational savings is independent of
day-ahead load and generation profiles, and subsequently the
power balance equation in (2). Lemma 2 below establishes this
constrained maximization as a linear program (LP).

Lemma 2. Consider a residential energy network employing a
financial policy of net metering as defined in Eq. (1), with g 2 Rs

P0

assumed fixed and known. The maximum operational savings are
obtained by solving the linear program

max
x12Rs

cT x1 ð17Þ

such that

A1x1 6 b1; ð18Þ
1T x1 ¼ 0; ð19Þ
where c :¼ Dg 2 Rs.

Proof. The result follows directly from Lemma 1 given the battery
constraints (11) and (12) defined in Section 2.2, and a financial pol-
icy of net metering (1). h

We will refer to the process of a customer implementing the
daily battery profile obtained by solving (17) subject to constraints
(18) and (19) as LP energy-shifting. When LP energy-shifting, the
grid profile obtained through substitution of the load, generation
and battery profiles into the power balance equation in (2) is said
to be LP energy-shifted.

3.2. Example

In this example we consider a 10 kWh battery to illustrate LP
energy-shifting in the residential energy network given in Fig. 1.

Let C ¼ 10 kWh (battery capacity), vð0Þ ¼ 0:5C (initial state of
charge of the battery), and B ¼ �B ¼ 2 kW (charge/discharge lim-
its).1 Let T ¼ 24 h, D ¼ 0:5 h and s ¼ T=D ¼ 48 be fixed throughout.

Let the financial policy of net metering (1) associated with
meter M be specified as shown below in Fig. 2(a). In Fig. 2(a) we
observe the electricity prices peak from 2 pm to 8 pm, and are
ten times the cost of electricity from 10 pm to 7 am. From 7 am
to 2 pm, and again from 8 pm to 10 pm, electricity is billed, or com-
pensated, at the rate of $0.06/kWh.

Let the load and generation profiles l and g be specified as
shown in Fig. 2(b), where the residential load includes a utility con-
trolled heated water cylinder [26].2 Due to the water heater, the
load profile peaks around midnight in Fig. 2(b), which does not align
with the generation profile peak around midday.

Using the above setup, Fig. 2(c) illustrates the baseline grid pro-
file ~x2 (corresponding to the absence of a battery), as defined in Eq.
(4). By contrast, maximization of operational savings using the
solution of the linear program in Lemma 2 yields the battery profile
x1 illustrated in Fig. 2(d). Substituting the battery profile x1 into the
power balance equations in (2) returns the corresponding grid pro-
file x2, also shown in Fig. 2(d). Comparing the baseline grid profile
in Fig. 2(c) to the grid profile in Fig. 2(d), we observe the 10 kW
battery charges (x1 < 0) between 11:30 pm–midnight, increasing
the grid profile peak (from 3.5 kW to 5.5 kW), and discharges
(x1 > 0) between 2 pm and 8 pm, reducing the grid profile such
that power is delivered to the grid for the entire peak pricing
period.

This example demonstrates that the grid profile x2 is not penal-
ized for reverse power flow, nor for increased peaks in the grid pro-
file when LP energy-shifting. Hence, net metering with an
unrestricted grid profile will not aid distribution operators in
maintaining system voltages within operational limits.

3.3. Including utility benefits

In the previous example we observed the solution to the
LP-based algorithm scheduled a battery to discharge during peak
pricing periods, which resulted in reverse power flow at the point
of common coupling (PCC). The reverse power flow observed
between 2 pm and 8 pm in Fig. 2(d) will increase the voltage at
the PCC during the peak pricing period [21,35]. For voltage
increases that exceed power quality standards, approaches are
needed to mitigate system non-compliance. Moreover, significant
reverse power flows in the distribution grid potentially degrade
the effectiveness of existing voltage control and protection
schemes that are typically designed for one-way power flow from
the high voltage substation to the low voltage customer [5,4,6].
Problems that potentially occur when significant reverse power
flows present in the existing distribution grid include:

� blinding of protection [5], or more specifically, overcurrent and
earth fault relay under-reach [6, Section 3.4.1],
� false tripping of protection relays [6, Section 3.4.2], also known

as sympathetic tripping [5],
� circuit breakers reclosing after a transient fault that is not extin-

guished when reverse power flow is present [4–6], and
� over-voltages at a customers’ premises when existing on-line

tap changing transformers have insufficient taps to lower the

1 Other battery specifications are certainly possible in the battery model presented
in Section 2.2.

2 In some countries, residents often allow the utility to control their
all-electric-heated water systems for periods in the day, given a financial incentive.
For these customers, the utility switches their water-heating services on during
periods of low load, and off during periods of peak-load, in a manner that ensures
minimal impact to the network.
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voltage sufficiently to enable reverse power flow in the distribu-
tion grid [4].

Therefore, reverse power flows potentially imposes costs on the
electrical distributor, when the distributor is required to imple-
ment (often new) control and protection schemes that ensure a
safe, reliable supply of high quality electricity to all customers [6,
Section 8].

In what follows we consider penalizing reverse power flow at
the PCC to reduce voltage rise when net metering. To balance
penalties for reverse power flow with increases in operational sav-
ings when net metering, we consider a quadratic program
(QP)-based scheduling algorithm that minimizes a weighted grid
profileXs

k¼1

hðkÞðx2ðkÞÞ2; ð20Þ

where hðkÞ is a selectable weighting such that hðkÞP 1 for all
k 2 1; . . . ; sf g. In this paper the weights hðkÞ in Eq. (20) are calcu-
lated via the greedy-search algorithm in [42].

In more detail, the energy management system selects the
weights hðkÞ via the greedy-search algorithm presented in [42,
Section 5], given a financial policy, load and generation profiles l
and g, and battery constraints vð0Þ;C;B, and B. The greedy-search
algorithm assigns weights hðkÞ (where larger weights are often
assigned to the peak pricing period) to balance penalties for
reverse and positive power flows with increases in operational sav-
ings that accrue to a customer with rooftop solar generation, a bat-
tery, and residential load as shown in Fig. 1. Therefore, the QP
algorithm does not significantly penalize reverse power flow at
the PCC for each individual customer across the entire day (e.g.,
the shoulder pricing period from 7 am to 2 pm, when PV genera-
tion is potentially significant). However, we show in Section 4.3
that the QP-based algorithm is very effective at reducing reverse
power flow across the entire day for the majority of PV customers.

Moreover, the computational time to QP energy-shift (including
the time to find the preferred H) on each day for each residential
customer is on average 0.44 s with a 1.7 GHz Intel Core i7 2013
processor. That is, the QP nature of this metric enables us to solve
the optimization problem quickly, illustrating its suitability for
Receding Horizon Control (RHC) extensions.

To minimize expression (20) we design a battery profile x1, subject
to constraints (11) and (12) and the power balance equation in (2).
That is, we require the day-ahead load and generation profiles l and
g that are unnecessary when LP energy-shifting, to ensure the power
balance equation in (2) holds. We assume the day-ahead forecasts of
residential load and PV generation are known and perfect.

For known and specified weights hðkÞ, the following Lemma
expresses the constrained minimization in (20) as a quadratic pro-
gram (QP).

Lemma 3 [42, Lemma 1]. The minimization of expression (20),
subject to battery constraints (11) and (12) and the power balance Eq.
(2), can be written as the following quadratic program:

min
x2R2s

xT Hx ð21Þ

such that

A1x 6 b1; ð22Þ
A2x ¼ b2; ð23Þ

where x 2 R2s;H 2 R2s�2s;H 2 Rs�s;A1 2 R4s�2s;A2 2 Rðsþ1Þ�2s;

b2 2 Rsþ1, and

x :¼ xT
1 xT

2

� �T
; H :¼

0 0

0 H

" #
;

H :¼ diagðhð1Þ; . . . ;hðsÞÞ; A1 :¼ A1 0½ �;

A2 :¼
1T 0T

I I

24 35; b2 :¼
0

l� g

" #
:

(a)

(b)

(c)

(d)

Fig. 2. The financial policy and profiles in Example 3.2. Financial policy (a), load and generation profiles (b), baseline grid and battery profiles (c), and grid and battery profiles
for C ¼ 10 kWh (d).
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The grid profile obtained by solving (21) subject to constraints
(22) and (23) is said to be QP energy-shifted and we will refer to
the process of a customer implementing the daily battery and grid
profiles obtained by solving (21) subject to constraints (22) and
(23) as QP energy-shifting.

4. Assessing the benefits of net metering

In this section we consider publicly released residential PV gen-
eration and load data for 300 de-identified customers located in an
Australian distribution network, operated by Ausgrid [51]. The
Ausgrid distribution network covers 22,275 km2 and includes load
centers in Sydney and regional New South Wales. The dataset
included separately reported measurements of load and PV gener-
ation recorded as energy over windows of 30 min duration, which
we convert to average powers in kW over the half hour period.
Further, the Ausgrid dataset spans a 1 year period from 1 July
2010 and includes information on the installed capacity for each
of the 300 residential-scale rooftop solar PV units (in kWp), with
the installed capacity ranging from 1 kWp to 9.99 kWp.

In our earlier work [42] we identified several means by which
anomalous records (for example, due to inverter failure) are iden-
tified and excised from the Ausgrid dataset, leaving a subset of 145
customers. In this paper we consider the load and generation pro-
files of this subset. Consequently, the load and generation profiles
of each customer are not identical to each other, but rather, are his-
torical average loads and historical average PV generation profiles.
The load and generation profiles l and g for each of the 145 cus-
tomers are defined with T ¼ 24 h, D ¼ 0:5 h, and s ¼ T=D ¼ 48,
for each day in the 365 days. To assess the benefits of net metering
we consider the load and generation profiles for each of the
N ¼ 145 customers.

In what follows we show that annual savings when
energy-shifting are dependent on a variety of factors for each cus-
tomer, including the algorithm selected for scheduling a battery,
and the financial policy implemented. By bench-marking the

operational savings when QP energy-shifting against the opera-
tional savings when LP energy-shifting, we examine the impact
of variations in load and generation profiles.

4.1. Simulation parameters

In the LP-based and QP-based simulations that follow we spec-
ify T ¼ 24 h, D ¼ 0:5 h and s ¼ T=D ¼ 48 throughout. We fix the
battery capacity at 10 kWh. In all cases the remaining battery con-
straints in (11) and (12) are vð0Þ ¼ 5 kWh, and B ¼ �B ¼ 5 kW.
That is, the battery charge/discharge limit is B ¼ �B ¼ 5 kW, and
the initial state of charge is vð0Þ ¼ 5 kWh (cf. Section 2.2).

With the Optimization Toolbox in MATLAB R2014b the
interior-point algorithm is used to solve the LP energy-shift prob-
lem, and the interior-point-convex algorithm is used to solve the
QP energy-shift problem. Moreover, when QP energy-shifting we
specify the weights in H via the greedy-search algorithm presented
in [42].

We consider three different financial policies that are defined
with reference to bi-directional meter M. We employ time-of-use
electricity billing for all financial policies, while altering electricity
compensation profiles. We fix the length-s billing profiles
(in $/kWh) for each financial policy as follows:

gb ¼ ½gbð1Þ; . . . ;gbðsÞ�T ; ð24Þ
where gbðkÞ ¼ 0:03 for k 2 f1;2; . . . ;14;45; . . . ;48g; gbðkÞ ¼ 0:06
for k 2 f15;16; . . . ;28;41; . . . ;44g, and gbðkÞ ¼ 0:3 for k 2 f29;
30; . . . ;40g.

We denote by FP1, the financial policy which meets the require-
ments of net metering in (1) by gðkÞ ¼ gbðkÞ for all k. We denote by
FP2 the financial policy that includes a feed-in tariff, where the
length-s compensation profile is gc ¼ ½0:4; . . . ; 0:4�T . We denote by
FP3 the financial policy that does not incentivize excess generation,
where the length-s compensation profile is gc ¼ ½0; . . . ;0�T . The bill-
ing and compensation profiles for the three financial policies are
shown in Fig. 3. We describe electricity billing from 10 pm to

(a)

(b)

(c)

Fig. 3. We consider three financial policies. FP1: net metering with time-of-use pricing (a), FP2: time-of-use billing with a feed-in tariff (b), and FP3: time-of-use billing with
no financial compensation for excess generation (c).
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7 am at the rate of $0.03/kWh as an off-peak pricing period, electric-
ity billing from 7 am to 2 pm and again from 8 pm to 10 pm at the
rate of $0.06/kWh as a shoulder pricing period and electricity billing
from 2 pm to 8 pm at the rate of $0.30/kWh as a peak pricing period.
Thus, the financial policy FP2 indeed compensates the consumer at
the rate of $0.40/kWh, which is higher than the peak pricing rate of
$0.30/kWh charged by the utility. This generous feed-in rate of
$0.40/kWh is representative of the feed-in tariffs that were offered
to residential customers eligible for the NSW Solar Bonus
Scheme in Australia that commenced in 2010 (and will end on
31 December 2016) together with the time-of-use rates for resi-
dential energy consumption (billing) during the same period
[52]. In this paper, however, we consider the generous feed-in tariff
in FP2 in the context of a customer with a single bi-directional
meter as shown in Fig. 1, whereas the generous feed-in tariff
offered under the NSW Solar Bonus Scheme required two meters
at the residential premises to compensate PV generation separate
to residential load.

In what follows we do not consider daily changes in electricity
prices. That is, if FP1 is employed on the first day, on each consec-
utive day FP1 is also employed when LP or QP energy-shifting.
Furthermore, we do not consider battery aging. That is, for any
day-ahead battery profile x1 we consider a 10 kWh battery is avail-
able, where C ¼ 10 kWh on each consecutive day. Therefore, we do
not consider uncertainty in the day-ahead battery capacity and the
day-ahead electricity prices in the results that follows.

4.2. Assessing customer benefits

For the net metering policy described by FP1, we benchmark the
annual savings for each customer when LP energy-shifting against
the annual savings when QP energy-shifting. We recall LP
energy-shifting maximizes the daily operational savings. In con-
trast, QP energy-shifting aims to increase, rather then maximize,
the daily operational savings, while penalizing reverse power flow.

In Fig. 4 we observe the annual savings for each of the N ¼ 145
customers subject to both LP and QP energy-shifting. Under LP
energy-shifting, all customers accrue annual savings of $986/yr,
regardless of the variability in their respective load and generation
profiles. In contrast, the annual savings when QP energy-shifting
are less then the annual savings when LP energy-shifting, for all
customers. In some instances, the annual savings when QP
energy-shifting are negative.

Consequently, QP energy-shifting sacrifices a proportion of the
maximum operational savings, and in some instances a customer
is charged (negative savings) for scheduling battery storage. The
residential costs or reduction in operational savings when QP
energy-shifting is a result of the penalty applied to reverse power
flow. We anticipate the comparison of LP-based versus QP-based
annual savings will assist distributors in developing demand man-
agement strategies, where a subsidy for QP energy-shifting may

encourage some customers to reduce reverse power flow that is
otherwise incentivized by net metering.

4.3. Assessing utility benefits

To quantify reverse power flow and peak load events for a util-
ity, we define the average load, generation, grid, and state of charge
profiles for the N customers as follows. The average load profile on a
given day is defined by

l̂ :¼ 1
N

XN

i¼1

lðiÞ

where lðiÞ denotes the load profile for the ith customer on the given
day. The average generation, grid, and state of charge profiles ĝ; x̂2,
and v̂ are then defined analogously in terms of the corresponding

customers’ gðiÞ; xðiÞ2 , and vðiÞ, respectively, on the given day.
For the net metering policy FP1, Fig. 5 illustrates the average

load, generation, grid, and state of charge profiles on 9 January
2011, and 5 July 2010, when QP energy-shifting and LP
energy-shifting. In Fig. 5(1a) we observe the average generation
profile on 9 January 2011 exceeds the average load profile for part
of the day (from 9.30 am to 4 pm). In Fig. 5(2a) we observe the aver-
age load profile exceeds the average generation profile for the entire
day on 5 July 2010. Thus, when a utility connects each customer via
a lossless feeder, from 9.30 am to 4 pm on 9 January 2011 excess

generation (NðĝðkÞ � l̂ðkÞÞ for all k 2 f20; . . . ;32g) is pushed
upstream creating voltage rise in the absence of residential batter-
ies to energy time-shift.

In Fig. 5(1b) and (2b) we observe the QP-based algorithm penal-
izes reverse power flow, while reducing the peak load that corre-
sponds to peak pricing periods on both days, i.e., the QP
energy-shifted average grid profile is approximately zeroed on both
days during the peak-pricing period. In contrast, the LP-based algo-
rithm permits reverse power flow during the peak pricing period,
i.e., the LP energy-shifted average grid profile x̂2 is less than zero
during the peak pricing period on both days. Therefore, when a util-
ity connects each of the 145 customers via a lossless feeder, LP
energy-shifting will push reverse power flow upstream (Nx̂2ðkÞ
for all k 2 f29; . . . ;40g), which will create voltage rise.

We envision load flow analysis will assist the distributor in pre-
dicting the severity of the voltage rise condition when each cus-
tomer implements LP energy-shifting. The QP-based algorithm is
an approach to mitigating non-compliant voltage rise identified
by the distributor, which results from the financial incentive for
reverse power-flow when net metering is used.

In Fig. 5(1b) and (2b) we also observe the LP energy-shifted dis-
tance between peak and minimum average power in x̂2 is reduced
when QP energy-shifting. The distance is defined by the difference
between the peak average power flow x̂2ð45Þ and the minimum
average power flow x̂2ð29Þ. On 9 January 2011 the distance is
4.9 kW when LP energy-shifting, which is reduced to 1.5 kW when
QP energy-shifting. On 5 July 2010 the distance is 4.2 kW when LP
energy-shifting, which is reduced to 2.9 kW when QP
energy-shifting. Therefore, reducing the LP energy-shifted distance
reduces the impact of large voltage swings related to reverse
power flow and peak average power flow x̂2ð45Þ.

In Fig. 5(1c) and (2c) we observe that when LP energy-shifting
each customer has a battery that is fully discharged at 8 pm and
10 pm, and fully charged at 7 am and 2 pm, irrespective of the vari-
ations in each customer’s load and generation profiles on either
day. In contrast, the average state of charge profile when QP
energy-shifting is significantly different to LP energy-shifting on
9 January 2011, since the QP-based algorithm strongly restricts
reverse power flow during the peak pricing period.
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Fig. 4. Annual savings for each customer when net metering via FP1.
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4.4. Assessing the financial policy

In this section we compare the operational savings for two
particular customers when implementing QP energy-shifting for
each financial policy defined in Section 4.1. We select customer
A, a representative customer that often generates excess energy,

and customer B, a representative customer that rarely generates
excess energy. Recall, financial policy FP1 meets the requirements
of net metering in (1) by gðkÞ ¼ gbðkÞ for all k. Financial policy FP2
is representative of the generous feed-in tariffs that were offered to
residential customers eligible for the NSW Solar Bonus Scheme in
Australia. Financial policy FP3 provides no compensation for

 (1a)  (2a)

 (1b)  (2b)

 (1c)  (2c)

Fig. 5. Average profiles when every customer employs QP or LP energy-shifting with net metering (FP1). Average load and generation profiles given a day when generation
often exceeds load, and vice versa (1a and 2a), grid profiles (1b and 2b), and average state of charge profiles (1c and 2c).
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reverse power flow at the PCC, yet includes time-of-use tariffs for
electricity billing consistent with both financial policies FP1 and
FP2.

In Fig. 6(1b), (2b), and (3b) we observe customer B financially
benefits from QP energy-shifting, irrespective of the financial pol-
icy. By way of an explanation we consider the prevalence of posi-
tive power flows at the PCC of customer B, i.e., reverse power
flows at the PCC are rare. In this context, the time-of-use billing
profiles in FP1, FP2 and FP3 provide significant financial incentives
to customer B to shift positive power flows at the PCC from the
peak pricing periods to off-peak pricing periods. Moreover,
when QP energy-shifting the greedy-search algorithm significantly
penalizes positive power flows during the peak pricing
period. Therefore, customer B financially benefits from QP
energy-shifting since the significant penalties applied to positive
power flows during the peak pricing period (via the
greedy-search algorithm) additionally increase the operational
savings.

In contrast, customer A in Fig. 6(1a) benefits from QP
energy-shifting on some days when net metering (FP1), and on
even fewer days in Fig. 6(2a) with a feed-in tariff (FP2). However,
when the financial policy does not compensate reverse power flow
(FP3), we observe in Fig. 6(3a) customer A benefits from QP
energy-shifting on all days. By way of an explanation we consider
the prevalence of reverse power flows at the PCC of customer A
(that potentially occur during the shoulder and peak pricing peri-
ods). In this context, in Fig. 6(1a) and (2a) we observe negative
operational savings occur while QP energy-shifting since financial
policies FP1 and FP2 incentivize the reverse power flow that the
QP-based algorithm penalizes. Therefore, not all customers benefit
from QP energy-shifting when the financial policy includes incen-
tives for reverse power flow.

5. Conclusions

In this paper we assessed the benefits of scheduling residential
battery storage co-located with solar PV. For a typical net metering
policy, we developed two optimization-based algorithms with dif-
ferent objective functions to schedule the residential batteries. The
results of a case study including 145 residential customers located
in an Australian distribution network confirmed that distributor
objectives should to be taken into account when scheduling bat-
tery storage, to mitigate potential voltage rise associated with
reverse power flow.

Our approach to scheduling battery storage to mitigate poten-
tial voltage rise associated with the financial incentive for reverse
power flow when net metering, required no additional metering
infrastructure. We envision this approach will assist distributors
in developing demand management strategies, where a subsidy
may encourage some customers to reduce reverse power flow,
when required. Furthermore, understanding the monetary incen-
tives that lead to potential voltage rise when scheduling battery
storage will allow for more sophisticated energy pricing strategies.
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5

Power management in a
distribution network

Part 3 of this thesis is comprised of Chapter 5 and Chapter 6, that incorporate the residential

system presented in Part 2 into a larger distribution network. In Part 3 we more directly consider

the management of bi-directional power flows in a distribution network, placing an indirect focus

on modest requirements for sensing and communication infrastructure. In all cases, residential

battery storage is coordinated in the context of the financial policy of net metering, as defined in

Part 2.

Chapter 5 consists of the paper titled Central versus localized optimization-based approaches to

power management in distribution networks with residential battery storage,1 that addresses the

problem of managing reverse power flow and peak loads within a distribution network. This

paper extends and combines the problem formulations from Chapter 4, by incorporating design

parameters in the form of scalar weights. These design parameters facilitate the balance in benefits

associated with managing bi-directional power flows, with further increase operational savings that

accrue to residential customers. Guidance on selecting the design parameters is provided.

Chapter 6 addresses problems that may occur infrequently in Australian distribution networks,

but could potentially lead to costly remediation for distribution operators. These problems include

significant reverse power flows along a medium voltage feeder (designed for uni-directional power

flow), peak electricity demand non-coincident with PV generation, and supply voltages in a low

voltage network that are above or below allowable thresholds. We present problem formulations

that include one or more of the objective functions presented in Chapter 5, thereby extending

previous work.

1The title of the accepted paper has been changed to be more descriptive of the approach. Previously this paper
was titled “Optimization-based approach to power management in distribution networks with residential battery
storage.”



Central versus localized optimization-based approaches to power management in
distribution networks with residential battery storage
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Abstract

In this paper we propose two optimization-based algorithms for coordinating residential battery storage when solar

photovoltaic (PV) generation in excess of load is compensated via net metering. Our objective is to balance increases

in daily operational savings that accrue to customers with the management of reverse power flows and/or peak loads

approaching a network capacity. To achieve this objective we present a central quadratic program (QP)-based algo-

rithm, where residential customers implement a distributor-specified day-ahead battery schedule. We also present a

local QP-based algorithm, where each residential customer implements a day-ahead battery schedule subject to three

distributor-specified weights. To complete our assessment of the distributor benefit, both QP-based scheduling al-

gorithms are applied to measured load and generation data from 145 residential customers located in an Australian

distribution network. The results of this case study confirm both QP-based scheduling algorithms manage reverse

power flow and peak loads within a distribution network. In the context of net metering, all customers exhibit the

same operational savings when implementing the central QP-based algorithm, while the local QP-based algorithm

disproportionately penalizes some customers.

Keywords: Demand-response, battery scheduling, peak-load reduction, photovoltaics, reverse power flow.

1. Introduction

Recently, there has been a rapid uptake of grid-connected solar photovoltaics (PV) in many countries [1]. Drivers

include the ever-decreasing cost of PV panels [2, 3], concerns regarding climate change, and government incentives

such as feed-in tariffs and net metering offered directly to residents investing in on-site renewable generation [4–

6].

Consequently, many electrical distributors are now faced with managing bi-directional power flows in distribution

networks previously designed for one-way power flow [7, 8]. Of particular concern to distributors are power flows

approaching a network capacity and reverse power flows inducing voltage rise, especially when either situation leads

to substantial network investment [9–12].

Demand-side approaches to managing distribution power flows potentially defer (or possibly avoid) significant costs

associated with distribution reinforcement [13–28]. The demand-side approach in [13] curbs PV production when

such production induces significant voltage rise, creating a need for grid reinforcement [14]. To further improve

distribution supply voltages the demand-side approach in [15] considers a sophisticated controller in the PV inverter

∗Corresponding author: Elizabeth L Ratnam, Tel.: +61 2 492 16026, Fax: +61 2 492 16993.
Email addresses: elizabeth.ratnam@ieee.org (Elizabeth L. Ratnam), Steven.Weller@newcastle.edu.au (Steven R. Weller ),

Chris.Kellett@newcastle.edu.au (Christopher M. Kellett )



that adjusts the real and reactive power supplied to, or absorbed by, the distribution grid. For the purpose of improving

supply voltages in a distribution network the approach in [16] is to charge residential battery storage co-located

with solar PV when a predetermined threshold for PV generation is exceeded. Other demand-side approaches that

potentially manage distribution supply voltages and/or peak demand include direct load control [17–22], and price-

responsive load control [23–25]. For example, distributor-specified time-of-use electricity prices are included in the

category of price-responsive load control [25]. A customer implementing a distributor’s request to switch a thermal

load on or off is an example of direct load control [22].

However, without careful coordination, the potential benefits of demand-side approaches to managing bi-directional

power flows in a distribution network might not be realized [19, 26, 29–32]. For example, a second load peak in the

distribution grid may arise when autonomous, time-based electric vehicle charging schedules are implemented [19],

potentially leading to a need for costly distribution reinforcement. Furthermore, increases in reverse power flows (or

peak loads) potentially arise when a battery connected to a distribution grid is discharged (or charged) in response

to time-varying electricity prices [31, 33], which may also necessitate network investment. Moreover, PV storage

systems designed to increase self consumption may not explicitly assist distributors in avoiding PV-related voltage

rise [26, 32].

Several authors have investigated coordinated approaches to scheduling demand-side battery storage with the objective

of alleviating the need for grid reinforcement by managing bi-directional power flows in a distribution network [14,

26, 31, 34, 35]. For example, a linear program (LP) is employed in [31] to reduce peak power flows (potentially

in the reverse direction) through a distribution substation. Furthermore, [31] proposes direct control of a customer’s

battery schedule by the distributor when the LP-based power flow reductions are required. To support PV self-

consumption in addition to minimizing significant voltage rise in a distribution grid, different control strategies are

proposed in [26], which are benchmarked and evaluated in terms of economic viability. The optimization problem

in [34] includes penalties for large power fluctuations to and from an interconnection point that connects a smart

grid to an upstream electricity network. To reduce power fluctuations within a distribution grid, [34] proposes direct

control of demand-side battery schedules by a distributor. In contrast, a central energy management system (EMS)

in [35] coordinates supply and demand within a microgrid in a number of ways. For example, a central EMS in [35]

either dispatches power flow references to customers connected to a microgrid, or directly controls battery charge

and discharge schedules of each microgrid customer. That is, each microgrid customer in [35] has a local EMS that

manages residential battery schedules subject to central EMS references or directives.

In the recent literature most approaches to scheduling residential battery storage focus on the (potentially infrequent)

need for managing bi-directional power flows in a distribution grid [14, 26, 34, 35] or look to reduce electricity bills

for the customer [36, 37]. In contrast, our recent work looks to balance these two objectives, namely increasing

the operational savings that accrue to residential customers with PV storage systems against the management of

distribution power flows to alleviating voltage and or load conditions that necessitate grid reinforcement [33, 38]. In

this paper we propose two approaches that more directly balance these two objectives, thereby extending our previous

work in [33, 38]. Further, we apply the forecasting methodology proposed in [39] to assess the effectiveness of each

algorithm when there exists uncertainty in day-ahead load and generation forecasts.

More specifically, in this paper we present two coordinated demand-side approaches to managing bi-directional power

flows within a distribution grid, when excess generation is compensated via net metering. The first approach is

referred to as central quadratic program (QP) energy-shifting, where selected customers implement a distributor-

specified day-ahead battery schedule. The second approach is referred to as local QP energy-shifting, where three

distributor-specified weights are incorporated into the QP-based algorithm of selected customers to obtain a day-
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Figure 1: Residential system illustrating the direction of positive power flows and the bi-directional meter M. Arrows associated with g(k), l(k),
x1(k) and x2(k) illustrate the assumed direction of positive power flow. Meter M measures and records (in kW) power flow x2(k), where k is a time
index.

ahead battery charge and discharge schedule. In both QP-based approaches our objective is to balance an increase

in operational savings that accrue to customers scheduling battery storage, with reductions in reverse power flows

and/or load peaks within a distribution grid. We apply each QP-based approach to measured load and generation data

from 145 Australian residential customers and investigate customer and distributor benefits of coordinated residential

battery scheduling.

To implement central QP energy-shifting a distributor does the following: (1) identifies a region in the distribution grid

to implement a coordinated approach to residential battery scheduling; (2) forecasts the day-ahead power flows along

an interconnection point to the distribution region; (3) runs optimization-based algorithms daily; and (4) broadcasts

a day-ahead battery charge and discharge schedule to each regional customer. Furthermore, each regional customer

requires an energy management system that: (1) coordinates with Advanced Metering Infrastructure (AMI) to advise

the distributor of existing battery parameters including the current state of charge; (2) coordinates with the AMI to

receive a day-ahead battery charge and discharge schedule from the distributor; and (3) schedules battery storage in

the day-ahead.

To implement local QP energy-shifting a distributor does the following: (1) identifies a region in the distribution grid

to implement a coordinated approach to residential battery scheduling; and (2) broadcasts three day-ahead weights

to each regional customer. Furthermore, each regional customer requires an energy management system that: (1)

coordinates with AMI to receive day-ahead prices for energy delivered to and from the grid; (2) coordinates with

AMI to receive the three distributor-specified weights to be applied in the day-ahead; (3) forecasts the day-ahead

residential load and PV generation; (4) runs optimization-based algorithms daily; and (5) schedules battery storage in

the day-ahead.

This paper is organized as follows. In Section 2 we introduce a distribution region with graph notation and define a res-

idential system. In Section 3 we represent a distribution network with a directed graph, and introduce a methodology

for distributor-based and customer-based forecasts. In Section 4 we present two QP-based algorithms to coordinate

residential battery charge and discharge schedules within a distribution region. In Section 5 the two QP-based algo-

rithms are implemented and evaluated given real-world data from an Australian electricity distributor.

Notation

Let Rs denote s-dimensional vectors of real numbers and Rs
≥0 s-dimensional vectors with all non-negative components

where, as usual, R1 =R. I denotes the s-by-s identity matrix and 1∈Rs
≥0 denotes the all-1s column vector of length s.
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0 denotes an all-zero matrix, or an all-zero column vector, where the context will make clear the dimension intended,

and T = [ti j] denotes the s-by-s matrix satisfying ti j = 1 for i≥ j and ti j = 0 elsewhere.

2. Preliminaries

In what follows each residential customer connected to a distribution network may deliver power to, or receive power

from, a distributor. Fig. 1 represents the residential system of each customer connected to a distribution network.

To manage bi-directional power flows in a distribution network we consider coordinated approaches to charging and

discharging residential battery storage.

In more detail, we consider a region in the distribution network. We identify residential customers in the specified

region, and consider ways to coordinate their day-ahead battery schedules. We envision our coordinated approach to

scheduling residential battery storage will assist distributors seeking to reduce peak demand and/or manage reverse

power flows approaching a regional capacity. To define a region in the distribution grid we employ a graph notation

similar to that in [40].

2.1. Directed graphs

A directed graph G consists of a set of M vertices V= {1, . . . ,M} and a set of directed edges E⊆V×V. Each directed

edge from vertex i to vertex j is represented by (i, j) ∈ E. The transitive closure of G = (V,E) that defines the set of

all directed paths is denoted by the matrix MG. The entries of MG, where vertices i, j ∈ V, are MG
ji = 1 if there exists

a directed path from vertex i to vertex j, or i = j, otherwise MG
ji = 0.

In this paper all graphs G are assumed to be simple, i.e., there are no repeated edges or self loops (i, i) /∈ E, for any

vertex i ∈ V. Furthermore, we assume a graph G is also a rooted tree, where the root vertex is labeled M. Thus, for

every other vertex k ∈ V, k ∈ {1, . . . ,M−1}, there is a unique directed path from M to k.

5"4"3"2"

9" 10"7"

11"

6" ""8"

12"

1"

Figure 2: An example directed graph G, where the Mth vertex 12 denotes the root, and vertices 1-5 represent leaves in the rooted tree. The shaded

region highlights the subgraph G6.

For each vertex i ∈ V, we define the set of its downstream vertices Vi by

Vi = { j ∈ {1, . . . ,M} |MG
ji = 1}. (1)

That is, j ∈ Vi if and only if a directed path exists from vertex i to vertex j, or i = j. Edges that connect the set of

downstream vertices Vi are referred to as downstream edges. That is, edge ( j,k) ∈ E is a downstream edge if and only

if vertices j,k ∈ Vi. Consequently, for each vertex i ∈ V we denote a set of downstream edges by Ei ⊂ E, where a set

of downstream edges Ei connect a set of downstream vertices Vi.
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With the above as background we define a subgraph by Gi := (Vi,Ei). That is, subgraph Gi consists of the set of

downstream vertices Vi ⊂ V, and the set of downstream edges Ei ⊂ E. Consequently, subgraph Gi is itself a rooted

tree, where i ∈ V denotes the root. In what follows we define a distribution region by a subgraph Gi = (Vi,Ei).

2.2. Residential systems

Fig. 1 illustrates the assumed topology of each residential system under consideration. Meter M measures and records

bi-directional power flows, where x2(k) denotes the measured power flow (in kW) over the kth interval of length ∆. By

convention measured power flows from (to) the grid to (from) the residential system over the period ((k−1)∆,k∆) are

represented by x2(k)> 0 (x2(k)< 0) for all k ∈ {1, . . . ,s}. To represent all measured power flows over a time window

[0,T ], where s is the number of time intervals of length ∆, and T = s∆ (in hours) is the time window of interest,

we define the grid profile by x2 := [x2(1), . . . ,x2(s)]T ∈ Rs. By combining measured power flows with prices for

buying and selling electricity, we can determine if a resident incurs an energy bill, or rather, is compensated for excess

generation.

In this paper we consider the financial policy of net metering widely adopted in the United States [5, 6, 41, 42], the

defining characteristic of which is that each resident is billed at the same rate as they are compensated for excess

generation [6, 33]. To represent daily variations in electricity prices we define a net metering profile of length s, where

s is the number of time intervals of length ∆, and T = s∆ (in hours) is the time window of interest. We denote the

electricity price (in $/kWh) over the period ((k−1)∆,k∆) corresponding to the measured power flow x2(k) at meter M
by η(k) for all k ∈ {1, . . . ,s}, and we define the net metering profile over [0,T ] by η := [η(1), . . . ,η(s)]T ∈Rs

≥0. In

this paper we generally consider T = 24 hours and ∆ = 1/2 hour (30 minutes), which implies s = 48. Other choices

are straightforward, subject only to commensurability of T , ∆, and s.

The remaining power flows represented in Fig. 1 are defined as follows. We represent the average power delivered

to the residential load (in kW) over the period ((k−1)∆,k∆) by l(k) for all k ∈ {1, . . . ,s}, and define the load profile

over [0,T ] as l := [l(1), . . . , l(s)]T ∈ Rs
≥0 . Likewise we represent the average PV generation (kW) over the period

((k−1)∆,k∆) by g(k) for all k ∈ {1, . . . ,s}, and define the generation profile over [0,T ] as g := [g(1), . . . ,g(s)]T ∈
Rs
≥0 .

We represent the average power (kW) delivered from (or to) the battery over the period ((k−1)∆,k∆) by x1(k) > 0

(or x1(k) < 0) for all k ∈ {1, . . . ,s}, and define the battery profile over [0,T ] as x1 := [x1(1), . . . ,x1(s)]T ∈ Rs. By

convention we represent charging (discharging) of the battery by x1(k) < 0 (x1(k)> 0).

From the configuration of the residential energy system in Fig. 1, we observe that the power balance equation

x2(k) = l(k)−g(k)− x1(k) (2)

must hold for all k ∈ {1, . . . ,s}.

With the above as background, we define the energy bill associated with the financial policy of net metering by

Σ := ∆ηT x2. In the absence of a battery, this reduces to the baseline energy bill defined by Σ̃ := ∆ηT (l−g), since the

battery profile satisfies x1(k) = 0 for all k ∈ {1, . . . ,s}.

The operational savings (in $/day) allow us to quantify the effectiveness of scheduling a battery. We define the oper-

ational savings, ψ , as the difference between the energy bills obtained with and without a battery as follows:

ψ := Σ̃−Σ. (3)

5



The operational savings in (3) may also be expressed in terms of the battery profile x1 as shown in the following

Lemma.

Lemma 1 ([33, Lemma 1]). Consider a residential energy network employing a financial policy of net metering,

where η ∈ Rs
≥0 is assumed fixed and known. Let x1 ∈ Rs represent the battery profile over [0,T ] where T = s∆. Then

the operational savings are given by

ψ = ∆ηT x1. (4)

Remark 1. If there exists a ∈ R>0 so that η = a1, then the operational savings in equation (4) are $0 [38, Lemma

2].

In this paper we assume each residential system under consideration is sufficiently rated, as in our previous work

[33, 38]. That is, excluding the battery constraints, we assume there are no additional residential constraints for any

proposed battery schedule. For example, we assume a conductor extending from a point of common coupling to a

residential PV inverter imposes no thermal limit.

2.3. Battery constraints

To capture the limited “charging/discharging power" of the battery, we include the battery profile constraint B1 ≤
x1 ≤ B1, where B ∈R≤0 and B ∈R≥0. Given the battery profile x1, the state of charge of the battery (in kWh) at time

k∆ is denoted by χ(k), where

χ(k) := χ(0)−
k

∑
j=1

x1( j)∆ for all k ∈ {1, . . . ,s} ,

and χ(0) denotes the initial state of charge of the battery. We represent the battery capacity (in kWh) by C ∈ R≥0,

the state of charge profile by χ := [χ(0), . . . ,χ(s)]T ∈ Rs+1, and we represent the state of charge profile constraint

by

0≤ χ ≤C

[
1

1

]
.

That is, we employ a deliberately simplified battery model to assess the distributor and/or customer benefits of coordi-

nating residential battery schedules when net metering, which may be extended for more specific battery technologies.

This simplified battery model was previously used in [33, 37, 38]. The complexity of additional battery constraints is

covered in more detail in [43].

In order to avoid an energy-shifting bias in our results, we include the constraint χ(s) = χ(0), where χ(s) is the

final state of charge at time s∆ [38]. To simplify the notation in what follows we define C := (χ(0)/∆)1, and C :=

(1/∆)(C− χ(0))1, where the initial state of charge satisfies 0≤ χ(0)≤C. Further, let A1 :=
[
I −I T −T

]T

∈ R4s×s, and b1 :=
[
B1T B1T CT CT

]T
∈ R4s. Thus, we succinctly write the battery constraints as

A1x1 ≤ b1, (5)

1
T x1 = 0. (6)
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3. Problem formulation

In this section we present an approach to quantify, and forecast, bi-directional power-flows in a lossless distribution

network.

3.1. Distribution network

We consider a single line diagram of a lossless, radial power distribution network. The point of supply from the trans-

mission network to the distribution network is referred to as the Bulk Supply Point (BSP). Each customer connected

to the specified distribution network is represented by a residential system of the form shown in Fig. 1. A Point of

Common Coupling (PCC) depicted in Fig. 1 is simply a point where a single residential system connects to the distri-

bution network. We refer to the distribution network as the supply-side, and customers connected to the distribution

network as the demand-side.

In what follows our primary interest is bi-directional power flows that approach the capacity of infrastructure in the

specified distribution network. However, this condition is not essential to applying our methodology. For example,

we may consider power flows that induce a voltage rise for which remediation with voltage regulation infrastructure is

limited. Similarly, we may consider peak power flows that approach the thermal capacity of distribution infrastructure.

In contrast, we may simply consider bi-directional power flows in the distribution network, where the distribution

capacity, or infrastructure limits, are unknown.

With the above as background, we represent a single line diagram of a radial distribution network with a directed

graph G, as defined in Section 2.1. In what follows a graph G is also a rooted tree, where the root vertex M is the

BSP, and each leaf in the rooted tree corresponds to a PCC. The set of directed paths from the root vertex M, to every

other vertex k ∈ V, k ∈ {1, . . . ,M−1}, corresponds to the directions of positive power flows. Power flows against the

positive direction are negative, and are referred to as reverse power flows.

In this paper we are primarily interested in power flows that are approaching the supply-side capacity as identified

by the distributor with the assistance of load flow analysis. A directed edge ( j, i) ∈ E associated with a power flow

approaching the supply-side capacity is called an edge of interest and is labeled Ei. We represent the capacity of the

edge Ei by an upper limit in kW denoted by P ∈R≥0, and a lower limit in kW denoted by P ∈R. To ensure customers

receive a reliable supply of electricity, power flows along the edge Ei must not exceed the upper limit P, or fall below

the lower limit P.

To manage power flows along edge Ei, a directed edge from vertex j ∈ V to vertex i ∈ V, we consider a subgraph

Gi. Recall, a subgraph Gi is defined in Section 2.1. We call the root vertex of subgraph Gi the Supply Point (SP).

The leaves of subgraph Gi represent Points of Common Coupling (PCC). The N customers with a PCC included in

the subgraph Gi are represented by n = {1, . . . ,N}. We refer to the N demand-side customers as subgraph members.

Fig. 3 highlights an example subgraph G6, with N = 3 demand-side customers, an SP vertex i = 6, and an edge of

interest denoted by E6.
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Figure 3: A directed graph G, where E6 represents the edge of interest. The shaded region highlights the subgraph G6, where vertex 6 denotes the

SP.

To define the power flows along edge Ei, we formulate the definitions of subgraph load, subgraph generation, sub-

graph battery, and subgraph grid profiles over [0,T ] by

L :=
N

∑
n=1

l(n), G :=
N

∑
n=1

g(n), X1 :=
N

∑
n=1

x(n)1 , X2 :=
N

∑
n=1

x(n)2 , (7)

where l(n), g(n), x(n)1 , x(n)2 denote the load, generation, battery and grid profiles, respectively, for subgraph member n

over [0,T ]. Note that L, G, X1, and X2 ∈Rs. Neglecting power losses, power flows (in kW) along edge Ei over [0,T ] are

represented by the subgraph grid profile X2. Furthermore, the subgraph grid profile can be written as X2 = L−G−X1,

which is a direct result of the power balance equation in (2).

Example: In this example the distribution network G is presented in Fig. 3, where vertex 12 denotes the BSP. Assume

the distribution operator identifies the edge of interest E6 = (11,6) within G, with limits P = 25kW and P =−10kW.

The inputs required to identify a subgraph of G are shown in Table 1.

Table 1: Inputs required to identify subgraph Gi

Inputs Example

Directed graph: G directed graph Fig. 3

BSP: vertex M vertex 12 in Fig. 3

Edge of interest: Ei = ( j, i) E6 in Fig. 3

The inputs in Table 1 yield the subgraph G6. In more detail, vertex 6 associated with the edge of interest E6 = (11,6)

denotes the subgraph root, and is labeled the SP. The vertex set of subgraph G6 is defined by the set of downstream

vertices, that is, the downstream vertices of the SP are V6 = {1,2,3,6,7,8}. Each subgraph leaf represents the PCC

of a subgraph member, where the set of subgraph leaves are {1,2,3} ⊂ V6. Consequently, the subgraph G6 contains

the PCC of N = 3 subgraph members. Each directed path from vertex 6 (the SP) to a PCC is included in the subgraph

G6.

As a concrete example, one possible scenario describing the edge of interest E6 upper in lower limits is as follows:

the upper limit P = 25kW on the edge of interest E6 reflects a thermal rating of an electrical conductor, while the

lower limit P = −10kW on the edge of interest reflects a voltage rise constraint, i.e., voltage rise at the PCC of each

subgraph member is within allowable limits when reverse power flow is limited to −10kW along edge E6. Other

scenarios that describe the edge of interest upper and lower limits are certainly possible.
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3.2. Forecasts

In this paper we consider two demand-side approaches to managing power flows along an edge of interest. Both appro-

aches coordinate demand-side battery schedules of customers with a PCC downstream of the SP. The first approach

(central QP energy-shifting) requires the distributor to forecast the day-ahead subgraph load and subgraph genera-

tion profiles, (cf., equation (7)). The second approach (local QP energy-shifting) requires each subgraph member to

forecast their day-ahead load and generation profiles.

In this section we do not suggest specific approaches the distributor, or customer, may take to perform such forecasts,

but rather, describe methods to emulate forecast data appropriate for simulation from known and available data. To

emulate load and generation forecasts for each subgraph member we consider known and available load and generation

profiles, respectively. Further, to emulate distributor-based forecasts we consider the emulated forecasts of load and

generation pertaining to each subgraph member, respectively.

To emulate generation forecasts for each subgraph member we use the methodology proposed in [39]. That is, we

emulate the generation forecast for subgraph member n by apply a moving average window to a known and fixed

generation profile g(n) as follows:

ĝ(n)(k) =
1
3
(g(n)(k−1)+g(n)(k)+g(n)(k+1)), (8)

for all k ∈ {2,3, . . . ,s− 1}, and we let ĝ(n)(k) = g(n)(k) for k ∈ {1,s}. We define the generation forecast over [0,T ]

by ĝ(n) := [ĝ(n)(1), . . . , ĝ(n)(s)]T ∈ Rs
≥0 . Further, we emulate the subgraph generation forecast over [0,T ] as fol-

lows:

Ĝ :=
N

∑
n=1

ĝ(n), (9)

where ĝ(n) is an emulated forecast of a generation profile for subgraph member n on a given day.

Likewise, we emulate the day-ahead load forecast for each subgraph member using the methodology proposed in [39].

To emulate the load forecast for subgraph member n, denoted by l̂(n) ∈ Rs
≥0, we use a known and fixed load profile

l(n) and include uncertainty in the forecast as follows

l̂(n)(k) := l(n)(k)+δ (k)

for all k ∈ {1, . . . ,s}, where δ (k) is a random number generated from a normal distribution of mean zero with a

standard deviation of 20% of l(n)(k). We define the load forecast over [0,T ] by l̂(n) := [l̂(n)(1), . . . , l̂(n)(s)]T ∈ Rs
≥0 .

Further, we emulate the subgraph load forecast over [0,T ] as follows:

L̂ :=
N

∑
n=1

l̂(n), (10)

where l̂(n) is an emulated forecast of a load profile for subgraph member n on a given day.

Furthermore, we denote a grid forecast for subgraph member n by x̂(n)2 , where day-ahead power balance equation for

the residential energy system in Fig. 1 is

x̂(n)2 (k) = l̂(n)(k)− ĝ(n)(k)− x(n)1 (k), (11)
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which must hold for all k ∈ {1, . . . ,s}. We define the grid forecast over [0,T ] by x̂(n)2 := [x̂(n)2 (1), . . . , x̂(n)2 (s)]T ∈
Rs .

Neglecting power losses, potential day-ahead power flows along an edge of interest Ei are determined via a fore-

cast, that is, the subgraph forecast. We denote the subgraph forecast by X̂2, where the day-ahead power balance

equation

X̂2(k) = L̂(k)− Ĝ(k)−X1(k) (12)

holds for all k ∈ {1, . . . ,s}. We define the subgraph forecast over [0,T ] by X̂2 := [X̂2(1), . . . , X̂2(s)]T ∈ Rs .

Example: Consider N = 145 customers connected to a subgraph Gi, where Gi represents a region in the distribution

network. The subgraph Gi therefore contains 145 leaves, where each leaf represents the PCC of a subgraph members.

In what follows we consider the N = 145 subgraph members to quantify uncertainty in emulated load and generation

forecasts.
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Figure 4: Subgraph member 100: (a) load profile and load forecasts, and (b) generation profile and generation forecasts. Scaled by a factor of 1/N:

(a) subgraph load profile and subgraph load forecast, and (b) subgraph generation profile and subgraph generation forecast.

Fig. 4 compares emulated load and generation forecasts for a subgraph member (for use in local QP energy-shifting)

with emulated forecasts for a distributor considering the entire subgraph (scaled by 1/N and for use in central QP

energy-shifting). We observe the subgraph load L and subgraph generation G profiles scaled by a factor of 1/N are

distinctly different from the load l(100) and generation g(100) profiles of subgraph member 100, respectively. This

observation reflects the diversity in the load profile of each subgraph member, and the diversity in the PV panel

orientation of each subgraph member, respectively.

In Fig. 4(a) we observe the distributor-based forecast of load L̂ is closely aligned to the subgraph load profile L. In

contrast, the load forecast of subgraph member 100, l̂(100), is not closely aligned to the corresponding load profile

l(100). In Fig. 4(b) we observe the distributor-based forecast of generation Ĝ scaled by a factor of 1/N is closely

aligned with the subgraph generation profile G scaled by a factor of 1/N. In contrast, the generation forecast of

subgraph member 100, ĝ(100), is not closely aligned to the corresponding generation profile g(100), with particular

reference to the period between 7.30am-8am. These observations are consistent with our assumption that day-ahead

distributor-based forecasts of power flows along an edge of interest are typically more accurate with respect to day-

ahead forecasts of load and PV generation determined by subgraph member n.
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4. Two algorithms for battery scheduling

In what follows the distributor selects and transmits the day-ahead net metering financial policy η to all grid-connected

customers. Furthermore, the distribution operator conducts load flow analysis to identify the day-ahead edge of

interest (if any) in the distribution grid G, together with the limits P and P associated with the edge of interest. The

distributor also identifies the SP vertex associated with the edge of interest, which denotes the root of the subgraph

under consideration in the sequel.

For an identified supply point in the distribution grid G, we consider two approaches to scheduling demand-side

battery storage to manage power flows along an edge of interest. The first approach is referred to as central QP

energy-shifting, where the distributor sends each subgraph member a battery profile for the day-ahead. The second

approach is referred to as local QP energy-shifting, where each subgraph member determines their day-ahead battery

profile subject to three distributor-specified weights. Both approaches aim to increase the operational savings of each

subgraph member while respecting the constraints associated with the edge of interest.

4.1. Central QP energy-shifting

Central QP energy-shifting refers to the process of each subgraph member implementing a distributor-specified battery

profile. That is, the distributor manages bi-directional power flows along the edge of interest by insisting that each

subgraph member implements the distributor-specified day-ahead battery charge and discharge schedule.

The central QP energy-shifting objective function is to maximize

s

∑
k=1

w∆η(k)X1(k)−η(k)(X̂2(k))2 (13)

for all k ∈ {1, . . . ,s}, where w is a distributor weighting, η(k) is the net metering electricity price in $/kWh over the

kth interval of length ∆, X1(k) represents is the kth entry in the subgraph battery profile (7), and X̂2(k) represent the

subgraph forecast (in kW) (cf., equation (12)).

The central QP energy-shifting objective function (13) consists of two terms. The first term is weighted by w and

maximizes the operational savings of the subgraph, denoted by Ψ and defined by

Ψ :=
N

∑
n=1

ψ(n) = ∆ηT X1, (14)

where N is the number of subgraph members, and ψ(n) represents the operational savings of subgraph member n

as in (4), η is the net metering profile, and X1 is the subgraph battery profile (7). The second term in (13) reduces

reverse power flow along an edge of interest, that potentially arises during the peak pricing period when maximizing

the subgraph operational savings Ψ [33]. More specifically, in [33] it was observed that scheduling battery storage to

maximize the operational savings led to significant reverse power flow during the peak pricing period. To counteract

this reverse power flow arising from increasing the operational savings, we weight the second term in (13) by η .

To further manage day-ahead power flows along an edge of interest, with limits P, P, we consider the following

subgraph forecast constraint

P1≤ X̂2 ≤ P1. (15)
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Additionally, the battery constraints when central QP energy-shifting are scaled by the number of subgraph members

N, as follows

A1X1 ≤ Nb1, (16)

1
T X1 = 0. (17)

That is, for the purpose of simplicity we assume in (16) that all subgraph members have battery parameters and

identical constraints as in (5). Extensions to heterogeneous battery constraints are certainly possible. Such extensions

will lead to different numerical results when central QP energy-shifting, however, we anticipate that the qualitative

results would be similar.

For a known and specified weight w, financial policy η , subgraph forecast constraints P, P, and a subgraph load and

generation forecast L̂, Ĝ, the following Lemma expresses the constrained objective function in (13) as a quadratic

program (QP).

Lemma 2. The maximization of expression (13), subject to battery constraints (16)–(17), the power balance equation

(12), subgraph forecast constraints (15), can be written as the following quadratic program:

max
x∈R2s

xT Hx+ cT x (18)

such that

A1x≤ b1, (19)

A2x = b2, (20)

where x ∈ R2s, H ∈ R2s×2s, H ∈ Rs×s, c ∈ R2s, w ∈ R, A1 ∈ R6s×2s, A2 ∈ R(s+1)×2s, b1 ∈ R6s, b2 ∈ Rs+1, and

x :=
[
X1

T X̂2
T
]T

(21)

H :=

[
0 0
0 −H

]
(22)

H := diag(η(1), . . . ,η(s)) (23)

c := w∆

[
η
0

]
(24)

A1 :=




A1 0
0 I
0 −I


 b1 :=




Nb1

P1
P1


 (25)

A2 :=

[
1

T 0T

I I

]
b2 :=

[
0

L̂− Ĝ

]
. (26)

Proof. The result follows directly from Lemma 1 given the battery constraints (5)–(6) defined in Section 2.3, a finan-

cial policy of net metering, and the power balance equation (2). �

We will refer to the process of a subgraph member implementing the daily battery profile x(n)1 = 1
N X1, where X1 is

obtained by solving (18) subject to constraints (19)-(20) as central QP energy-shifting.
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4.2. Local QP energy-shifting

Local QP energy-shifting refers to the process of each subgraph member implementing a daily battery profile, subject

to three distributor-specified weights. That is, to manage bi-directional power flows along the edge of interest, the

distribution operator transmits three weights to each subgraph member for the day-ahead. The three distributor-

specified weights are incorporated into an objective function in an optimization problem, that each subgraph member

solves in the day-ahead. In solving the optimization problem, each subgraph member determines a day-ahead battery

profile that is implemented when local QP energy-shifting.

The local QP energy-shifting objective function is to maximize

s

∑
k=1

w1∆η(k)x(n)1 (k)−w2η(k)(x̂(n)2 (k))2−w3(x̂
(n)
2 (k))2, (27)

for all k ∈ {1, . . . ,s}. The three distributor specified weights are denoted by w1, w2, and w3, and are applied to each

term in the QP objective function. Recall n denotes the subgraph member, η(k) denotes the net metering electricity

price in $/kWh, ∆η(k)x(n)1 (k) denotes the operational saving over the kth interval of length ∆ (see (4) in Lemma 1),

and x̂(n)2 (k) represents the forecast power flow (in kW) for subgraph member n as in (11).

The first term in (27) maximizes the operational savings that accrue to each subgraph member as done in [33], and is

weighted by w1. The second term reduces reverse power flow that potentially arises during the peak pricing period

when each subgraph member maximizes their operational savings, and is weighted by w2. The third term reduces peak

power flows that potentially arise during the off-peak pricing period when each subgraph member maximizes their

operational savings (similar to that in [19, 29]), and is weighted by w3. In the simulations that follow we investigate

the significance of each term, by adjusting the assigned weight.

For the distributor specified weights w1, w2, w3, and financial policy η , the following Lemma expresses the constrained

maximization in (27) as a quadratic program (QP).

Lemma 3. The maximization of expression (27), subject to battery constraints (5)–(6), the power balance equation

(2), can be written as the following quadratic program:

max
x∈R2s

xT Hx+ cT x (28)

such that

A1x≤ b1, (29)

A2x = b2, (30)

where A1 and b1 are as in (5) and x ∈ R2s, H ∈ R2s×2s, H ∈ Rs×s, c ∈ R2s, w1 ∈ R, w2 ∈ R, w3 ∈ R, A2 ∈ R(s+1)×2s,
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b2 ∈ Rs+1, and

x :=
[
x(n)1

T
x̂(n)2

T
]T

H :=

[
0 0
0 −(w2H+w3I)

]

H := diag(η(1), . . . ,η(s))

c := w1∆

[
η
0

]

A2 :=

[
1

T 0T

I I

]
b2 :=

[
0

l̂(n)− ĝ(n)

]
.

Proof. The result follows directly from Lemma 1 given the battery constraints (5)–(6) defined in Section 2.3, a finan-

cial policy of net metering, and the power balance equation (2). �

We will refer to the process of a subgraph member implementing the daily battery profile x(n)1 obtained by solving

(28) subject to constraints (29)-(30) as local QP energy-shifting. Extensions to heterogeneous battery constraints

when local QP energy-shifting are accommodated by constraints (29)-(30) in Lemma 3.

5. Assessing the benefits

We analyzed measured load and generation profiles from 1 July 2010 to 30 June 2011, for each of 145 randomly

selected low voltage customers located in an Australian distribution network operated by Ausgrid [41, 44]. The

Ausgrid distribution network covers 22,275 km2 and includes load centers in Sydney and regional New South Wales.

The load and generation profiles l(n) and g(n) for each of the 145 customers are defined with T = 24 hours, ∆ = 30

minutes, and s = T/∆ = 48, for each day over the course of 52 weeks. The ‘Ausgrid data set’ refers to the load and

generation profiles for each of these 145 customers, on each day over the course of 52 weeks.

In the simulations that follow we consider a subgraph Gi, where Gi represents a region in a distribution network that

contains 145 subgraph members. The load and generation profiles of each subgraph member, on each day over the

course of a year, are defined by the Ausgrid data set. To emulate forecast data for the subgraph, and each subgraph

member, we employ the methodology described in Section 3.2. For each of the N = 145 customer connected to the

subgraph Gi we fix T = 24 hours, ∆ = 30 minutes, and s = T/∆ = 48. In all cases, the residential battery constraints

in (5)–(6) are fixed, where

C = 10 kWh, χ(0) = 5 kWh, B =−B = 5 kW. (31)

On each day over the course of 52 weeks the length-s net metering policy (in $/kWh) is fixed as follows:

η = [η(1), . . . ,η(s)]T , (32)

where η(k) = 0.03 for k ∈ {1, . . .,14,45, . . .,48}, η(k) = 0.06 for k ∈ {15, . . .,28,41, . . .,44} and η(k) = 0.3 for k ∈
{29, . . .,40}. When central QP energy-shifting we denote by SL1 the subgraph forecast constraints

SL1 : P = 300, P =−∞. (33)
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To compare operational savings when central QP energy-shifting, we denote by SL2 the subgraph forecast con-

straints

SL2 : P = ∞, P =−∞. (34)

We assume the subgraph grid profile X2 (7) represents power flows (in kW) along the edge of interest Ei over [0,T ].

That is, we neglect power losses in the subgraph Gi. Furthermore, we assume the N = 145 subgraph members receive

a reliable supply of electricity when bi-directional power flows that enter or leave the subgraph Gi via the edge of

interest Ei do not exceed P = 300kW, or fall bellow P = −150kW. That is, upper and lower limits on the edge of

interest are

P = 300, P =−150. (35)

The remainder of this section is organized as follows. In Section 5.1 we define a baseline profile to benchmark the

distributor benefits of local and/or central QP energy-shifting presented in the sequel. In Section 5.2 we present

two examples to motivate the importance of coordinating day-ahead residential battery schedules. In Section 5.3 we

quantify the operational savings that accrue to subgraph members when local, or central QP energy-shifting, and we

reflect on the qualitative benefits of each approach.

5.1. Baseline profile

To assess the benefits of residential battery scheduling we define an important special case; that is, battery charge/dis-

charge powers of each subgraph member satisfy x(n)1 (k) = 0 for all k ∈ {1, . . . ,s}. Then, in this special case, the

subgraph grid profile X2 in (7) reduces to the baseline profile defined over [0,T ] by

X̃2 =
N

∑
n=1

l(n)−g(n). (36)

We note the baseline profile X̃2 is also defined in the absence of residential battery storage in the residential system

of each subgraph member. In what follows we consider 52 weeks of daily baseline profiles (i.e., we consider 365

baseline profiles), obtained directly from the Ausgrid data set.
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Figure 5: Daily peak and minimum power flows from each baseline profile X̃2. Dashed lines represent the upper and lower limits on the edge of

interest.

In Fig. 5 we present the daily peak and minimum power flows of each daily baseline profile, with reference to a 52

week period. The dotted lines in Fig. 5 show the upper and lower limits on the edge of interest, as in (35).

In Fig. 5 we observe the baseline profile exceeds the upper limit for the edge of interest at P = 300kW on 9 days in

the year, and falls below the lower limit at P = −150kW on 5 days in the year. Therefore, on most days, subgraph

members receive a reliable supply of electricity when they do not have, or they do not use, a battery.
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5.2. Distribution power flows

We now present two examples, where we investigate the design parameters associated with local and/or central QP

energy-shifting. In particular, we consider specific weights associated with local or central QP energy-shifting, and

determine resulting bi-directional power flows entering or leaving the subgraph via the edge of interest Ei. Recall,

subgraph members receive a reliable supply of electricity when power flows along the edge of interest Ei do not exceed

an upper limit, P = 300kW, or fall below a lower limit, P =−150kW, as in (35).

Table 2 presents the design parameters considered in the following two examples. In the first example we consider the

design parameters associated with Case A, and in the second example we consider the design parameters associated

with Case B and C. Note that the design parameters included in Table 2 have been carefully selected to highlight

the importance of coordinating day-ahead residential battery schedules. That is, a careful comparison of weights and

constraints was conducted, informing the choice of design parameters in Table 2.

Table 2: Design parameters for two examples in Section 5.2

Reference Central Reference Local

QP energy-shifting QP energy-shifting

Case A. Increase operation savings CQPa w = 10, SL2 (34) LQPa w1 = 9, w2 = 1, w3 = 0

Case B. Manage bi-directional power flows CQPb w = 2, SL1 (33) LQPb w1 = 9, w2 = 1, w3 = 1

Case C. Manage bi-directional power flows CQPc w = 0, SL1 (33) LQPc w1 = 5, w2 = 0, w3 = 2

In the two examples that follow the battery constraints are specified in (31) for all subgraph members. The day-ahead

net metering financial policy is specified in (32). Additionally, subgraph grid profile X2 corresponds to power flows

along the edge of interest, since we disregard network losses.

Example 1: Increase operational savings

In this example we consider design parameters associated with Case A in Table 2 to motivate the importance of

coordinating day-ahead residential battery schedules. When local QP energy-shifting, the design parameters LQPa are

selected to preference increases in operational savings that accrue to customers, where a large value of w1 is selected

with respect to weights w2 and w3. When central QP energy-shifting the design parameters CQPa are selected to

preference increases in operational savings, where a large weight w = 10 together with relaxed subgraph forecast

constraint SL2 reflect this preference.

Fig. 6 presents the daily peak and minimum power flows from each subgraph grid profile X2 obtained over the course

of 52 weeks, when local or central QP energy-shifting. That is, in Fig. 6(a) we consider power flows along the edge

of interest when local QP energy-shifting on each day in the 52 weeks. In Fig. 6(b) we consider power flows along

the edge of interest when central QP energy-shifting on each day in the 52 weeks. The dotted lines in Fig. 6 show the

upper and lower limits on the edge of interest, as in (35).
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Figure 6: The daily peak and minimum power flows from the subgraph grid profile X2. (a) Local QP energy-shifting with w1 = 9, w2 = 1, and

w3 = 0. (b) Central QP energy-shifting with w = 10 and SL2 given by (34).

The baseline profile X̃2 considered in Fig. 5 did not exceed the upper and lower limits, P = 300kW, P =−150kW, on

the edge of interest Ei on most days. In contrast, we observe in Fig. 6(a), and in Fig. 6(b), peak power flows from a

subgraph grid profile X2 exceed 300kW on every day in the year. Further, in Fig. 6 we observe peak reverse power

flows from each subgraph grid profile X2 fall below the lower limit at −150kW on most days in the year. Moreover,

the subgraph grid profile X2 associated with local QP energy-shifting is visually similar to the subgraph grid profile X2

associated with central QP energy-shifting. Thus, a consequence of the preference to increase operational savings is a

subgraph grid profile X2 when local, or central QP energy-shifting that approaches the uncoordinated case, where each

residential customer employs a battery schedule designed to maximize their operational saving; see [33] for further

details.

Therefore, a distributor must carefully select the design parameters when local, or central QP energy-shifting. Oth-

erwise, residential battery schedules may approach the uncoordinated case. In the following example we consider

approaches to improve coordination of residential battery schedules.

Example 2: Manage bi-directional power flows

In this example we consider the design parameters associated with Case B and Case C, as specified in Table 2. When

local QP energy-shifting the design parameters LQPb or LQPc are selected, where decreases in w1 and/or increases

in w3 offer considerable reductions in peak bi-directional power flows. When central QP energy-shifting the design

parameters CQPb or CQPc are selected, where w is decreased to reduce reverse power flows and constraint SL1

selected to limit peak power flows. The dotted lines in Fig. 7 show the upper and lower limits on the edge of interest,

as in (35).

Fig. 7 presents the daily peak and minimum power flows from each subgraph grid profile X2 obtained over the course

of 52 weeks, when local or central QP energy-shifting. That is, in Fig. 7(a) we consider power flows along the edge

of interest when local QP energy-shifting on each day in the 52 weeks. In Fig. 7(b) we consider power flows along

the edge of interest when central QP energy-shifting on each day in the 52 weeks.

We observe in Fig. 7(a) peak power flows from a subgraph grid profile X2 exceed 300kW on two day in the year, with

either set of design parameters, LQPb, LQPc. Furthermore, peak reverse power flows from a subgraph grid profile X2

in Fig. 7(a) are above the lower limit of−150kW on every day in the year with either set of design parameters, LQPb,

LQPc. Therefore, subgraph members do receive a reliable supply of electricity when local QP energy-shifting with
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design parameters LQPb or LQPc on all but these two days in the given year.
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Figure 7: Daily peak and minimum power flows from the subgraph grid profile X2. (a) Local QP energy-shifting with LQPb and LQPc, and (b)

central QP energy-shifting with CQPb and CQPc.

Furthermore, on the two days in the year when peak power flows exceed the upper limit on the edge of interest in

Fig. 7(a), we note these power flows are lower in magnitude than the respective peak power flows in the baseline con-

sidered in Fig. 5. Therefore, local QP energy-shifting manages power flows in a distribution grid via the coordination

of residential battery schedules, where the design parameters determine the level of coordination.

In Fig. 7(b) we observe peak power flows from a subgraph grid profile X2 slightly exceed 300kW on a number of day

in the year when central QP energy-shifting with design parameters CQPc. Furthermore, peak power flows from a

subgraph grid profile X2 slightly exceed 300kW on each day in the year, when central QP energy-shifting with design

parameters CQPb. These slight increases in peak power flow are the direct result of forecasting error, which may be

corrected by lowering the constraint P = 300kW when central QP energy-shifting. In contrast, reverse power flows

from a subgraph grid profile X2 in Fig. 7(b) are above the lower limit at −150kW on every day in the year, with either

set of design parameters, CQPb, CQPc.

Therefore, local, or central QP energy-shifting improves the coordination of residential battery schedules when the

design parameters are carefully selected. Well-coordinated residential battery schedules potentially ensure power

flows remain within the upper and/or lower limits on the edge of interest.

5.3. Operational savings

To further assess local and central QP energy-shifting we consider the daily operational saving that accrue to subgraph

members. In what follows the operational savings that accrue to a single subgraph member when local, or central QP

energy-shifting over a period of 52 weeks are denote by annual savings in $/yr. Thus, when the annual savings of a

subgraph member are positive, there exists an operational benefit to scheduling a battery. In contrast, when the annual

savings are negative there is an operational cost to scheduling a battery.

Local QP energy-shifting: In Fig. 8 we present the annual savings of each subgraph member when local QP energy-

shifting on each day of the year. In Fig. 8(a) the annual savings are obtained with design parameters LQPb. In Fig. 8(b)

the annual savings are obtained with design parameters LQPc.
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In Fig. 8(a) we observe two customers accrue a small negative annual saving when local QP energy-shifting, which

is consistent with previous findings [33, 38]. Specifically, in [33, 38] residential-scale batteries were scheduled to

significantly penalize bi-directional power flows during the peak pricing period, which resulted in some customers

accruing negative operational savings when PV production exceeded residential demand. In Fig. 8(b) we observe a

number of customers accrue negative annual savings when local QP energy-shifting, a consequence of lowering the

weighting on the operational savings (w1 = 5) while increasing penalties for peak power flows across the day (w3 = 2).

Therefore, local QP energy-shifting may disproportionately penalize some customers, with particular reference to the

operational costs some customers incur when implementing a local QP-based battery schedule.
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Figure 8: Annual savings for each subgraph member when local QP energy-shifting with design parameters from Table 2: (a) mean annual savings

of $398 with design parameters as specified by LQPb, (b) mean annual savings of $149 with design parameters as specified by LQPc.

Central QP energy-shifting: Recall each subgraph member receives an identical day-ahead battery schedule when

central QP energy-shifting, cf., Section 4.1. Therefore, each subgraph member accrues the same operational savings

when central QP energy-shifting, a direct result of Lemma 1. Consequently, in the results that follow each subgraph

member accrues the same annual savings when central QP energy-shifting.1

In Fig. 9 we consider the annual savings of each subgraph member when central QP energy-shifting with fixed design

parameters on each day of the year. That is, we consider the annual savings obtained when central QP energy-shifting

with a weight w ∈ {0,1, . . . ,10} and constraints SL1 (33) or SL2 (34), applied across the entire year.

Weight: w
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Figure 9: Annual savings for each subgraph member when central QP energy-shifting on each day in a year with weight w ∈ {0,1, . . . ,10} and SL1

or SL2.

In Fig. 9 we observe small weights (w < 4) reduce the annual savings, but when the weights are large (w ≥ 4)

1We anticipate, in cases where each subgraph member has heterogeneous battery constraints, the distributor-specified battery schedules will
ensure a fair distribution of the available subgraph operational saving, as in (14). That is, no subgraph member will be disproportionately penalized
with negative operational savings, while another member accrues significant positive operational savings, when central QP-energy-shifting.
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constraints SL1 limits the annual saving. We also observe the annual savings with constraints SL1 are approximately

$100 less than the annual savings with constraints SL2, for larger weights w≥ 5. Moreover, annual savings with large

weights together with constraint SL2 approach the maximum operational savings as defined in our previous work

[33].

To approximate the annual savings a customer with a 10 kWh battery may anticipate when central QP energy-shifting,

we consider the design parameters as specified in Table 2. With design parameters CQPa, a maximum annual sav-

ings of $986/year is inferred from Fig. 9. With design parameters CQPb, a maximum annual saving of approxi-

mately $620/year is inferred from Fig. 9. With design parameters CQPc, a maximum annual saving of approximately

$320/year is inferred from Fig. 9. Therefore, improving the coordination of battery schedules (i.e., managing bi-

directional power flows as in Fig. 7(b)) potentially leads to a reduction in annual savings for a customer when central

QP energy-shifting.2

In summary, this section presented a motivating example to illustrate the importance of coordinating residential bat-

tery schedules within a distribution region. We provided guidance on approaches to select the design parameters of

both QP-based algorithms, which determine the level of demand-side coordination. We found the central QP-based

approach was preferable in that all customers received the same annual savings. In contrast, the local QP-based

algorithm lead to annual costs, rather than savings, for some customers.

6. Conclusions

In this paper we presented two approaches to coordinating residential battery schedules when customers are offered

net metering PV incentives with time-based electricity prices. In assessing the benefits of both approaches we found

the central QP-based approach was preferable in that no customer was disproportionately penalized for reducing peak

load and/or reverse power flow in a distribution network. By means of a case study using measured load and generation

data from 145 residential customers located in an Australian distribution network, we found that all customers accrued

annual savings in the vicinity of $620 when central QP energy-shifting with a 10 kWh battery.

The design parameters considered in this paper were carefully chosen to highlight the flexibility of the local and

central QP-based algorithms. By carefully selecting the design parameters it was demonstrated that peak loads and/or

reverse power flow problems in a distribution grid are potentially mitigated. However, this mitigation typically comes

at a cost to the consumer in the context of reductions in operational savings.

Future work will also explore trade-offs between self-consumption and revenue streams for distribution operators.

Additional case studies with real network topologies requiring demand management strategies to reduce peak loads

or reverse power flows are possible, with a view to quantifying the impact on operational savings to customers offered

feed-in tariffs rather than net metering.
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6

A case study incorporating a
Gridlab-d distribution model

In Part 3 our overarching objective is to improve the balance in managing bi-directional power

flows in a distribution network with increases in operational savings that accrue to customers.

Emphasis is given to approaches requiring only modest sensing and communication infrastructure.

In all cases, operational savings that accrue to customers are considered in the context of the

financial policy of net metering, as defined in Part 2.

In Chapter 5 the problem formulations were designed to balance the management of bi-directional

power flows in a distribution grid with increases in operational savings that accrued to residential

customers. We presented two approaches to coordinating residential battery storage, and showed

a centralized approach provided improved performance, and offered a more equitable distribution

in operational savings that accrued to customers.

In Chapter 6 we address the problem of managing bi-directional power flows in a distribution

network, with a greater focus on influencing supply voltages in a low voltage network. We propose

two receding horizon optimization-based algorithms for coordinating residential battery storage,

the first of which is a Distributed-Receding Horizon Optimization (D-RHO) algorithm, and second

an Adaptive-Receding Horizon Optimization (A-RHO) algorithm. Both algorithms incorporate

one or more of the objective functions presented in Chapter 5, and are applied to a GridLAB-D

model of an Australian distribution region located in the suburb of Elermore Vale, NSW.
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Abstract

In this paper we propose two optimization-based algorithms for coordinating residential battery storage to manage

bi-directional power flows and supply voltages in a distribution grid. Our objectives are threefold: (1) to reduce re-

verse power flow creating significant voltage rise, (2) to reduce peak loads approaching a network capacity, and (3) to

improve voltages delivered to residential customers with solar PV. To achieve our objectives we present a Distributed-

Receding Horizon Optimization (D-RHO) algorithm, where charge and discharge rates of residential battery storage

are coordinated to directly influence power flows along a distribution feeder. We also present an Adaptive-Receding

Horizon Optimization (A-RHO) algorithm, where charge and discharge rates of residential battery storage are coor-

dinated to more directly manage supply voltages. To assess the distributor benefit, both RHO-based algorithms are

applied to a publicly available model of an Australian distribution region located in Elermore Vale. The results of

this case study confirm that the A-RHO algorithm improves supply voltages in a low voltage network, and that the

D-RHO algorithm offers a peak load reduction of 32% along the Elermore Vale medium voltage feeder.

Keywords: solar photovoltaics, residential battery, quadratic program, distribution grid, supply voltages.

1. Introduction

The recent rapid uptake of grid-connected solar photovoltaics (PV) in many countries has led to concerns regarding

the management of bi-directional power flows in distribution networks previously designed for one-way power flow

[1, 2]. Distributors are typically concerned with power flows approaching a network capacity and reverse power flows

inducing voltage rise, especially when either situation leads to substantial network investment [3, 4].
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Email address: elizabeth.ratnam@ieee.org and Steven.Weller@newcastle.edu.au (Elizabeth L. Ratnam* and Steven R. Weller)



Demand-side approaches to managing distribution power flows potentially defer (or possibly avoid) significant costs

associated with distribution reinforcement [5–20]. The demand-side approach in [5] curbs PV generation in response

to significant voltage rise in the distribution grid. The demand-side approaches in [6, 7] control a PV inverter that

adjusts the real and reactive power supplied to, or absorbed by, the distribution grid. Other demand-side approaches

include direct load control [8–13], and price-responsive load control (e.g., time-of-use pricing) [14–16]. Several

authors have also investigated coordinated approaches to charge and discharge battery storage with the objective of

managing bi-directional power flows in a distribution network [17–20].

In this paper we present two coordinated demand-side approaches to managing bi-directional power flows within a

distribution region. In the first approach, referred to as Distributed-Receding Horizon Optimization (D-RHO), charge

and discharge rates of residential battery storage are coordinated to reduce peak loads and reverse power flow in the

upstream distribution grid. In the second approach, referred to as Adaptive-Receding Horizon Optimization (A-RHO),

charge and discharge rates of residential battery storage are coordinated to more directly manage supply voltages while

influencing (to a lesser extent) power flows in the upstream distribution grid. In each approach a customer solves an

optimization problem subject to current and future constraints, with each problem formulated as a quadratic program

(QP).

To implement D-RHO an electrical distributor is required to broadcast to Advanced Metering Infrastructure (AMI)

forecasts of aggregate day-ahead power flows, day-ahead electricity prices, and a design parameter in the form of

a scalar weight. Furthermore, each customer requires an energy management system with an AMI interface that is

capable of executing optimization-based algorithms, applying battery charge/discharge rates, and updating the battery

state of charge. The A-RHO approach extends the system architecture required for D-RHO, wherein the energy

management system of each customer requires additional functionality. Specifically, to implement A-RHO the energy

management system of each customer must also: (1) forecast day-ahead residential load and PV generation; (2)

retrieve weights from a look-up table; and (3) select an optimization-based algorithm to run.

Other approaches to improve supply voltages in a distribution network are considered in [21–23], and include charging

a residential battery co-located with solar PV when a predetermined threshold for PV generation is exceeded [21].

In [22, 23] a main control center coordinates battery charge/discharge rates, where the main control center in Lee et

al. [22] collects supply voltages, supply frequencies, and the state of charge of each battery. With the exception of

[23], each of these approaches does not incorporate increases in operational savings that accrue to customers with

battery storage as defined in previous work [24]. In this paper we incorporate operational savings into the objective

functions of each algorithm, thereby extending our previous work in [23, 24]. In particular, we extend previous

work by employing Receding Horizon Optimization in both algorithms. Also, we apply the D-RHO and A-RHO

algorithms to a GridLAB-D model of an Australian distribution region, and consider the case where approximately

50% of customers have solar PV systems.
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This paper is organized as follows. In Section 2 we define a single residential system that we incorporate into a publicly

available model of an Australian distribution region. In Section 3 we propose two optimization-based approaches to

manage power and voltage profiles in a distribution network. In Section 4 we present simulation results that are based

on a GridLAB-D model of an Australian distribution feeder located in Elermore Vale, NSW.

Notation

Let Rs denote s-dimensional vectors of real numbers and Rs
≥0 s-dimensional vectors with all non-negative components

where, as usual, R1 =R. I denotes the s-by-s identity matrix and 1∈Rs
≥0 denotes the all-1s column vector of length s.

0 denotes an all-zero matrix, or an all-zero column vector, where the context will make clear the dimension intended,

and T = [ti j] denotes the s-by-s matrix satisfying ti j = 1 for i≥ j and ti j = 0 elsewhere.

(PCC)%

Distribu-on%Grid%

%Solar%PV%

%%%Ba7ery%

Residen-al%Load%

M"
Point%of%Common%Coupling%%

Figure 1: Residential system illustrating the direction of positive power flows and the bi-directional meter M. Arrows associated with g(k), l(k),

x1(k) and x2(k) illustrate the direction of positive power flow. Meter M measures and records (in kW) power flow x2(k), where k is a time index.

2. Preliminaries

In Section 2.1 we define a single residential system with solar PV co-located with battery storage as depicted in Fig. 1.

We incorporate this residential system into a larger distribution model which we introduce in Section 2.2. In particular,

our residential system replaces the assumed topology behind the Point of Common Coupling (PCC) for approximately

50% of customers in the distribution model. Our forecasting methodology for residential load and PV generation is

presented in Section 2.3.

2.1. Residential system

Before introducing a publicly available distribution model we start with defining a single residential system. Our

simple definition of a residential system is consistent with previous work [24], and is included in this paper to im-

3



prove clarity of the forecasting methodology presented in Section 2.3, and the problem formulation presented in

Section 3.

Fig. 1 illustrates the assumed topology of the residential system under consideration. We denote by x2(k) the measured

power flow (in kW) over the kth interval of length ∆. By convention measured power flows from (to) the grid to (from)

the residential system over the period ((k−1)∆,k∆) are represented by x2(k)> 0 (x2(k)< 0) for all k ∈ {1, . . . ,s}. To

represent all measured power flows over a time window [0,T ], where s is the number of time intervals of length ∆, and

T = s∆ (in hours) is the time window of interest, we define the grid profile by x2 := [x2(1), . . . ,x2(s)]T ∈ Rs.

In this paper we consider a financial policy of net metering, where each resident is billed at the same rate as they are

compensated for excess generation as defined in earlier work [24]. To represent daily variations in electricity prices we

define a net metering profile by η := [η(1), . . . ,η(s)]T ∈ Rs
≥0, where η(k) is the kth entry in the net metering profile

representing an electricity price (in $/kWh) over the period ((k−1)∆,k∆). In this paper we generally consider T = 24

hours and ∆ = 1/2 hour, which implies s = 48. Other choices are straightforward, subject only to commensurability

of T , ∆, and s.

The remaining power flows represented in Fig. 1 are defined as follows. We represent the average power delivered

to the residential load (in kW) over the period ((k−1)∆,k∆) by l(k) for all k ∈ {1, . . . ,s}, and define the load profile

over [0,T ] as l := [l(1), . . . , l(s)]T ∈ Rs
≥0 . Likewise we represent the average PV generation (kW) over the period

((k−1)∆,k∆) by g(k) for all k ∈ {1, . . . ,s}, and define the generation profile over [0,T ] as g := [g(1), . . . ,g(s)]T ∈
Rs
≥0 .

We represent the average power (kW) delivered from (or to) the battery over the period ((k−1)∆,k∆) by x1(k) > 0

(or x1(k) < 0) for all k ∈ {1, . . . ,s}, and define the battery profile over [0,T ] as x1 := [x1(1), . . . ,x1(s)]T ∈ Rs. By

convention we represent charging (discharging) of the battery by x1(k) < 0 (x1(k)> 0).

From the configuration of the residential energy system in Fig. 1, we observe that the power balance equation

x2(k) = l(k)−g(k)− x1(k) (1)

must hold for all k ∈ {1, . . . ,s}.

The operational savings (in $/day) allow us to quantify the effectiveness of scheduling a battery. We define the

operational savings, ψ , as the difference between the energy bills obtained with and without a battery. In previous

work [24] we show the operational savings may also be expressed in terms of the battery profile x1 as shown in the

following Lemma.

Lemma 1 ([24, Lemma 1]). Consider a residential energy network employing a financial policy of net metering,

where η ∈ Rs
≥0 is assumed fixed and known. Let x1 ∈ Rs represent the battery profile over [0,T ] where T = s∆. Then
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the operational savings are given by ψ = ∆ηT x1.

Remark 1. If there exists a ∈ R>0 so that η = a1, then the operational savings are ψ = $0 [25, Lemma 2].

In this paper we assume each residential system under consideration is sufficiently rated. That is, excluding the battery

constraints, we assume there are no additional residential constraints for any proposed battery schedule. For example,

we assume a conductor extending from a point of common coupling to a residential PV inverter imposes no thermal

limit.

To capture the limited “charging/discharging power" of the battery, we include the battery profile constraint B1 ≤
x1 ≤ B1, where B ∈R≤0 and B ∈R≥0. Given the battery profile x1, the state of charge of the battery (in kWh) at time

k∆ is denoted by χ(k), where

χ(k) := χ(0)−
k

∑
j=1

x1( j)∆ for all k ∈ {1, . . . ,s} ,

and χ(0) denotes the initial state of charge of the battery. We represent the battery capacity (in kWh) by C ∈R≥0, the

state of charge profile by χ := [χ(0), . . . ,χ(s)]T ∈ Rs+1, and we represent the state of charge profile constraint by

0 ≤ χ ≤C
[
1 1

]T
. That is, we employ a deliberately simplified battery model to assess the distributor benefits of

coordinating residential battery schedules, which may be extended for more specific battery technologies as presented

in [26, 27].

In order to avoid an energy-shifting bias in our results, we include the constraint χ(s) = χ(0), where χ(s) is the

final state of charge at time s∆ [25]. To simplify the notation in what follows we define C := (χ(0)/∆)1, and C :=

(1/∆)(C− χ(0))1, where the initial state of charge satisfies 0≤ χ(0)≤C. Further, let A1 :=
[
I −I T −T

]T

∈ R4s×s, and let b1 :=
[
B1T B1T CT CT

]T
∈ R4s. Thus, we succinctly write the battery constraints as

A1x1 ≤ b1, (2)

1
T x1 = 0. (3)

2.2. Distribution network

Fig. 2 illustrates key aspects of a GridLAB-D model of the Elermore Vale distribution region located in NSW, Australia

[28]. The Elermore Vale GridLAB-D model is publicly available and was developed as part of the federally funded

Australian Smart Grid Smart City (SGSC) program. The vast majority of customers in the Elermore Vale distribution

model do not have a PV system, and no existing customers in the Elermore Vale model have a battery storage system.

To investigate the impacts of significant reverse power flow in the Elermore Vale distribution region, we modify the

existing GridLAB-D model. For approximately 50% of customers in the Elermore Vale model the existing topology
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Figure 2: A visual representation of the GridLAB-D model for Elermore Vale developed during the Australian SGSC program. Each of 17 pole
mounted 11kV/400V distribution transformers include the prefix HP in their associated ID, and each of the remaining 6 ground-type distribu-
tion transformers include the prefix HS in their associated ID. From 11 pole mounted distribution transformers the associated 400V network is
highlighted to indicate (all) downstream customers have a residential system as defined in Section 2.1.

behind the PCC is replaced by the residential system defined in Section 2.1. Each customer represented by a residential

system is connected to the 400V network highlighted in Fig. 2, where the majority of residential systems have a single

phase connection. This modified GridLAB-D model forms the bases of our case study in Section 4.

Before describing the publicly available Elermore Vale distribution model we introduce typical operational require-

ments for Australian distribution operators. When power flows within a distribution network approach thermal limits

of electrical infrastructure, or voltages fall outside set tolerances, a distribution operator typically incurs remediation

costs. In the eastern states of Australia distribution voltages generally fall into one of two categories, Low Volt-

age (LV) defined by a nominal phase-to-neutral 230V with a tolerance of +10%/−6%, and Medium Voltage (MV)

defined by a range of phase-to-phase values from a nominal 1kV to a nominal 22kV [29].

In this paper our primary interest is maintaining voltages within a +10%/− 6% tolerance in the LV distribution

network while reducing peak loads approaching a thermal capacity in the upstream MV feeder. However, this voltage

condition and/or a thermal capacity limit is not essential to applying our methodology. For example, we may simply

consider bi-directional power flows in a distribution network, where the distribution capacity, or infrastructure limits,

and voltage tolerances are unknown.

To illustrate an application for our methodology we modify a publicly available GridLAB-D model of an urban

distribution region located in the suburb of Elermore Vale. The publicly available Elermore Vale GridLAB-D model

includes

• an On-Line Tap Changing (OLTC) Delta—grounded Wye 50 MVA 132kV/11kV transformer with an impedance

of Z = 0.0075+ j0.358 and 27 taps with step sizes of 1.25%,
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• a line drop compensation scheme that lowers or raises the taps of the 132kV/11kV transformer to improve the

voltage delivered to downstream customers,

• a (single) three phase radial MV feeder that spans 31.68 km and is operated at a nominal 11kV,

• 23 fixed-tap Delta—grounded Wye 11kV/400V distribution transformers where 17 are classified as pole mounted

and the remainder are classified as a ground-type (or pad-mount),

• for each 11kV/400V transformer the associated downstream three phase 400V network,

• per unit length impedances for each conductor (physical data that includes conductor spacing and the geometric

mean radius of each conductor is also provided),

• the PCC for each of 1785 customers, of which 1051 customers are identified as residential households, 36

customers are identified as business and the remaining 698 customers are left unclassified,1

• simulated average load profiles for each of the 1785 existing customers, and

• simulated PV generation for each of 164 existing customers.

In the publicly available Elermore Vale GridLAB-D model an average load profile for each existing customer is

simulated. The primary objective for simulating average load profiles is to maintain privacy for each customer while

improving the accuracy of simulated voltages and power flows along the MV feeder. A consequence of this primary

objective is limited diversity in customer load profiles within the Elermore Vale model. Further details on the approach

to determine average load profiles for each customer in the Elermore Vale model is available on the Australian Smart

Grid Smart City website [28].

In this paper we consider the impacts of significant residential PV penetration by representing approximately 50%

of LV customers supplied by the Elermore Vale feeder with a residential system depicted in Fig. 1. Specifically, the

phase-to-phase 400V network that connects each of N = 845 customers to one of the 11 pole-mounted distribution

transformers is highlighted in Fig. 2. Each customer supplied by one of the 11 pole-mounted transformers is de-

noted by n ∈ {1, . . . ,N}, and is referred to as an aggregate member. The existing topology behind the PCC for each

aggregate member is replaced with a residential system as defined in Section 2.1. In the Elermore Vale model the

assumed topology behind the PCC of the remaining 940 (commercial and residential) customers connected to one of

the other twelve 11kV/400V transformers remains unmodified. Consequently, the Elermore Vale distribution model

considered in the sequel depicts the scenario where approximately 50% of residential customers have solar PV co-

located with battery storage. Recall, the vast majority of existing customers in the Elermore Vale distribution model

1The suburb of Elermore Vale has over 2000 residential households and a relatively small number of businesses [30]. Thus, we assume the
majority of unclassified customers are residential.
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did not previously have a PV system, and no customer in the Elermore Vale model previously had a battery storage

system.

For each aggregate member we formulate definitions of aggregate demand and aggregate grid profiles over [0,T ]

by

D :=
1
N

N

∑
n=1

l(n)−g(n), X2 :=
1
N

N

∑
n=1

x(n)2 , (4)

where l(n), g(n), x(n)2 denote the load, generation and grid profiles over [0,T ], respectively, for aggregate member n.

Note that D, X2 ∈ Rs.

To manage peak loads and associated voltage dips together with reverse power flow inducing significant voltage rise at

the PCC of each aggregate member we consider distributed approaches to charge/discharge residential battery storage.

For simplicity in assessing distributed approaches, we assume each inverter in a residential system is 100% efficient

and operates in a manner that ensures unity power factor at a residential point of common coupling.

2.3. Forecasting methodology

Before introducing distributed approaches to charge/discharge residential battery storage we define our forecasting

methodology for residential and aggregate demand. To emulate generation forecasts for each aggregate member

we use the methodology proposed in [31]. That is, we emulate the generation forecast for aggregate member n by

applying a moving average window to a known and fixed generation profile g(n) as follows:

ĝ(n)(k) =
1
3
(g(n)(k−1)+g(n)(k)+g(n)(k+1)),

for all k ∈ {2,3, . . . ,s− 1}, and we let ĝ(n)(k) = g(n)(k) for k ∈ {1,s}. We define the generation forecast over [0,T ]

by ĝ(n) := [ĝ(n)(1), . . . , ĝ(n)(s)]T ∈ Rs
≥0 .

Likewise, we emulate the day-ahead load forecast for each aggregate member using the methodology proposed in

[31]. To emulate the load forecast for aggregate member n, denoted by l̂(n) ∈ Rs
≥0, we use a known and fixed load

profile l(n) and include uncertainty in the forecast as follows

l̂(n)(k) := l(n)(k)+δ (k)

for all k ∈ {1, . . . ,s}, where δ (k) is a random number generated from a normal distribution of mean zero with a stan-

dard deviation of 20% of l(n)(k). We define the load forecast over [0,T ] by l̂(n) := [l̂(n)(1), . . . , l̂(n)(s)]T ∈Rs
≥0 .
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We denote a grid forecast for aggregate member n by x̂(n)2 , where the day-ahead power balance equation for the

residential energy system in Fig. 1 is

x̂(n)2 (k) = l̂(n)(k)− ĝ(n)(k)− x(n)1 (k), (5)

which must hold for all k ∈ {1, . . . ,s}. We define the grid forecast over [0,T ] by x̂(n)2 := [x̂(n)2 (1), . . . , x̂(n)2 (s)]T ∈
Rs .

Similar to the approach described in [23], we emulate a demand forecast over [0,T ] as follows:

D̂ :=
1
N

N

∑
n=1

l̂(n)− ĝ(n), (6)

where l̂(n) is an emulated forecast of a load profile and ĝ(n) is an emulated forecast of a generation profile for aggregate

member n over a time window of interest [0,T ]. We denote the aggregate forecast for member n by X̂ (n)
2 , where the

day-ahead power balance equation

X̂ (n)
2 (k) = D̂(k)− x(n)1 (k) (7)

holds for all k ∈ {1, . . . ,s}. We define the aggregate forecast over [0,T ] by X̂2 := [X̂2(1), . . . , X̂2(s)]T ∈ Rs .

In the simulations that follow forecasts of load l̂(n), PV generation ĝ(n), and demand D̂ for aggregate member n

connected to a LV network in a distribution region are emulated. Indeed future work will replace emulated forecasts

with actual forecasts that predict load and PV generation based on past/real-time measurements.

3. Problem formulation

In this section we present two approaches to coordinating battery charge/discharge rates of each aggregate member,

where each member is represented by a residential system as depicted in Fig 1. In each approach we assume a demand

forecast D̂ and a net metering profile η are made available by a distributor. To simulate a demand forecasts over a

time window of interest [0,T ] we use the methodology presented in Section 2.3.

The first approach to coordinating battery charge/discharge rates of each aggregate member is presented in Section 3.1.

In this first approach increases in operational savings that accrue to customers are balanced with managing power flows

along a MV feeder. In the second approach presented in Section 3.2 voltages from the PCC of each aggregate member

are additionally incorporated into the problem formulation. Our objectives in each approach are threefold: (1) to

reduce reverse power flow creating significant voltage rise, (2) to reduce peak loads approaching a capacity constraint
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along a MV feeder, and (3) improve voltages at the PCC of each aggregate member. In defining each approach we

introduce notation similar to that in [32].

3.1. Distributed-Receding Horizon Optimization (D-RHO)

In the first approach, referred to as D-RHO, a distributor sends each aggregate member exogenous inputs [33] that

include a day-ahead demand forecast D̂, a day-ahead net metering profile η , and a weight w. All exogenous inputs are

updated by a distributor on time-step j of interval length ∆. To implement D-RHO at each time step j each aggregate

member

1. solves an optimization problem over the time window [ j∆,( j+ s)∆], which is subject to constraints,

2. yields a sequence of control actions {[x1[1| j], . . . ,x1[s| j]}, where the notation [k| j] denotes prediction time-step

k relative to actual time-step j as in [32],

3. applies a battery charge/discharge rate obtained from the first instant of the control sequence x1( j) := x1[1| j],
4. estimates the battery state of charge χ(n)[1| j] = χ(n)[0| j]+∆x(n)1 [1| j],
5. updates the initial state of charge of the battery χ(n)(0) = χ(n)[1| j] in preparation for the next time step,

6. fetches updates for exogenous inputs D̂, w, and η ,

7. sets j = j + 1 and repeats step 1. Note that the constraint of zero daily change in the state of charge (i.e.,

χ(s) = χ(0)) is not enforced over this process.

For the optimization problem considered at Step 1 the overarching objective function is to maximize

s

∑
k=1

w∆η [k| j]x(n)1 [k| j]−η [k| j]
(

X̂ (n)
2 [k| j]

)2
(8)

for all k ∈ {1, . . . ,s} relative to each time step j. On each time step j a weight w is specified by a distributor, η [k| j]
is the kth entry in the day-ahead net metering profile η in $/kWh, x(n)1 [k| j] is the kth entry in the battery profile of

aggregate member n, and X̂ (n)
2 [k| j] represent the kth entry in the aggregate forecast (in kW) of aggregate member n

(cf., equation (7)).

Similar to the objective function for central QP energy-shifting defined in [23] the D-RHO objective function in

(8) consists of two terms. The first term is weighted by w and maximizes the operational savings of aggregate

member n, denoted by ψ and defined in Lemma 1. The second term in (8) reduces aggregate reverse power flow

that potentially arises during the peak pricing period when maximizing the operational savings ψ of each aggregate

member [24].

For a known and specified weight w, financial policy η , and aggregate demand forecast D̂, the following Lemma

expresses the constrained objective function in (8) as a quadratic program (QP). That is, the optimization problem to

be solved during step 1 is formulated as a QP for which there are a number of market-ready solvers available.
10



Lemma 2. The maximization of expression (8), subject to battery constraints (2)–(3) and the power balance equation

(7), can be written as the following quadratic program:

max
x∈R2s

xT Hx+ cT x (9)

such that A1x≤ b1, A2x = b2, (10)

where A1 and b1 are as in (2) and x ∈ R2s, H ∈ R2s×2s, H ∈ Rs×s, c ∈ R2s, w ∈ R, A2 ∈ R(s+1)×2s, b2 ∈ Rs+1, and

x :=
[
x(n)1

T
X̂ (n)

2
T ]T

H :=


0 0

0 −H


 H := diag(η(1), . . . ,η(s))

c := w∆


η

0


 A2 :=


1

T 0T

I I


 b2 :=


0

D̂


 .

Proof. The result follows directly from Lemma 1 given the battery constraints (2)–(3) defined in Section 2.1, a finan-

cial policy of net metering, and the power balance equation (1). �

We will refer to the process of aggregate member n implementing a battery charge/discharge rate x(n)1 (1| j) at each

time step j obtained by solving (9) subject to constraints (10) as D-RHO energy-shifting.

3.2. Adaptive- Receding Horizon Optimization (A-RHO)

The system architecture for the A-RHO algorithm for aggregate member n is depicted in Fig. 3. As illustrated in

Fig. 3 exogenous inputs include a day-ahead demand forecast D̂, a day-ahead net metering profile η , and a weight

w, which are provided by a distributor. Further, day-ahead load and generation forecasts l̂(n), ĝ(n), and three weights

w1, w2, w3, are additional exogenous inputs that are specified by aggregate member n. Sensor outputs relative to time

step j include the voltage at the PCC V (n)( j), and the battery charge/discharge power x(n)1 ( j). The feedback loop

that incorporates the voltage measurements at the PCC, a latch with two output states L ∈ {0,1}, and time-of-day as

an input, determines the objective function to apply in the A-RHO problem. Specifically, we propose two objective

functions for the A-RHO algorithm: one that is defined by (8), and another that more directly influences voltages at

the PCC of each aggregate member.

To implement A-RHO the latch output L = 1 is held until midnight on a day when voltages at a PCC exceed a

maximum or fall below a minimum threshold. The maximum and minimum voltage thresholds are denoted by V and
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Figure 3: System architecture for A-RHO algorithm for aggregate member n. For the purpose of simplicity, in this paper real-time day-ahead load,
generation and demand forecasts l̂(n), ĝ(n), D̂, for aggregate member n are emulated as described in Section 2.3. For the grey box denoted A-RHO,
one of two QP-based algorithms is solved at each time step j to yeild the battery charge/discharge rate x(n)1 [1| j].

V , respectively. Latch output L = 1 is released at midnight, although we envision the latch could be released at any

time when voltages are consistently within set tolerances. For example, the latch may instead be released at 2am the

following day when reverse power flow creating voltage rise is not typically expected. At all other times the latch

output is L = 0.

For a latch output of L = 0 the aggregate member solves an optimization problem where the objective function is

defined by (8). Otherwise, for a latch output L = 1 the aggregate member solves an optimization problem where the

overarching objective function is to maximize

s

∑
k=1

w1∆η [k| j]x(n)1 [k| j]−w2η [k| j](x̂(n)2 [k| j])2−w3(x̂
(n)
2 [k| j])2, (11)

for all k ∈ {1, . . . ,s} relative to time step j. The three weights in (11) are denoted by w1, w2, and w3, and are applied to

each term in the objective function. Recall n denotes the aggregate member, η [k| j] denotes the net metering electricity

price in $/kWh over the kth interval of length ∆, ∆η [k| j]x(n)1 [k| j]) denotes the operational saving over the kth interval

of length ∆ (cf. Lemma 1), and x̂(n)2 [k| j] represents a forecast power flow (in kW) for aggregate member n as in

(5).

Similar to the objective function for local QP energy-shifting defined in [23], the first term in (11) maximizes the

operational savings that accrue to each aggregate member as done in [24], and is weighted by w1. The second

term reduces reverse power flow that potentially arises during the peak pricing period when each aggregate member

maximizes their operational savings, and is weighted by w2. The third term reduces peak power flows at all times,

and is weighted by w3. In [23] we investigated the significance of each term, by adjusting the assigned weight. In the

simulations that follow supply voltages in the Elermore Vale model are influenced significantly when a preference for
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reducing peak power flows at all times is incorporated through weight selection.

To implement A-RHO as depicted in Fig. 3, at each time step j each aggregate member

1. solves an optimization problem for the time window [ j∆,( j+ s)∆], which is subject to current and future con-

straints, and the output state of latch L,

2. yields a sequence of optimal open-loop control actions {[x1[1| j], . . . ,x1[s| j]}, where the prediction time-step k

is relative to actual time-step j as in [32],

3. applies a battery charge/discharge rate obtained from the first instant of the control sequence x1( j) := x1[1| j],
4. estimates the battery state of charge χ(n)[1| j] = χ(n)[0| j]+∆x(n)1 [1| j],
5. updates the initial state of charge of the battery χ(n)(0) = χ(n)[1| j] in preparation for the next time step,

6. fetches updates for exogenous inputs that include D̂, η , l̂(n), ĝ(n), w, w1, w2, w3,

7. sets j = j+1 and repeats step 1.

Given weights w1, w2, w3, a financial policy η , and day-ahead load and generation forecasts l̂(n), ĝ(n), for aggregate

member n, the following Lemma expresses the constrained maximization in (11) as a quadratic program (QP). That

is, the optimization problem to be solved during step 1, when latch output L = 1, is formulated as a QP.

Lemma 3. The maximization of expression (11), subject to battery constraints (2)–(3), the power balance equation

(1), can be written as the following quadratic program:

max
x∈R2s

xT Hx+ cT x (12)

such that A1x≤ b1, A2x = b2, (13)

where A1 and b1 are as in (2) and x ∈ R2s, H ∈ R2s×2s, H ∈ Rs×s, c ∈ R2s, w1 ∈ R, w2 ∈ R, w3 ∈ R, A2 ∈ R(s+1)×2s,

b2 ∈ Rs+1, and

x :=
[
x(n)1

T
x̂(n)2

T ]T

H :=


0 0

0 −(w2H+w3I)


 H := diag(η(1), . . . ,η(s))

c := w1∆


η

0


 A2 :=


1

T 0T

I I


 b2 :=


 0

l̂(n)− ĝ(n)


 .

Proof. The result follows directly from Lemma 1 given the battery constraints (2)–(3) defined in Section 2.1, a finan-

cial policy of net metering, and the power balance equation (1). �
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We use the term A-RHO energy-shifting to denote the process of aggregate member n implementing a battery charge/dis-

charge rate x(n)1 [1| j] at each time step j obtained when latch output L = 0 by solving (9) subject to constraints (10), or

when latch output L = 1 by solving (12) subject to constraints (13).

4. Assessing the benefits

In this section we present simulation results for the A-RHO and D-RHO algorithms, where our objectives are to

(1) reduce reverse power flow creating significant voltage rise, (2) reduce peak loads along an 11kV feeder, and (3)

improve voltages delivered to aggregate members. In all simulations we consider the Elermore Vale GridLAB-D

model, where the model includes solar generation from approximately 50% of residential customers as described in

Section 2.2. To assess the performance of the D-RHO algorithm we present power flows (in kW) directly from the

11kV bus depicted in Fig. 2. To compare the performance of each RHO-based algorithm we present supply voltage

profiles for each of 37 aggregate members connected to pole mounted transformer HP1431. These 37 customers are

carefully selected to benchmark improvements in supply voltages when each aggregate member implement a RHO-

based algorithm. In all simulations the GridLAB-D model incorporates a line-drop compensation scheme that lowers

and raises taps on the 132kV/11kV transformer to improve voltages delivered to downstream customers as depicted

in Fig. 2.

Power flows representing load and PV generation for each of N = 845 aggregate members, on each 30 minute interval

for a five day period 7 January 2013 — 11 January 2013 are defined by real historical data as described in [34].

Specifically, to represent all N = 845 customers with real historical data we duplicate a clean Ausgrid dataset no

more then three times, where 291 customers make it into the clean Ausgrid dataset defined in [34]. With this real

historical data we emulate forecast data for each aggregate member at each time step j via the methodology described

in Section 2.3.

For each aggregate member connected to the Elermore Vale distribution region we fix T = 24 hours, ∆ = 0.5

hours, and s = T/∆ = 48. On 7 January 2013 the length-s net metering profile (in $/kWh) is fixed as follows η =

[η(k), . . . ,η(s)]T , where η(k)= 0.03 for k∈{1, . . .,14,45, . . .,48}, η(k)= 0.06 for k∈{15, . . .,28,41, . . .,44} and η(k)=

0.3 for k ∈ {29, . . .,40}. On each subsequent day the length-s net metering profile (in $/kWh) remains as per 7 January

2013.

Initially, each aggregate member has a battery with state of charge χ(0) = 5 kWh. At each time step j the initial state

of charge for the battery of aggregate member n is updated. For the purpose of simplicity, all remaining residential

battery constraints in (2)–(3) are fixed, where C = 10 kWh and B =−B = 5 kW for each aggregate member.

Given approximately 50% of residential customers have solar PV in the Elermore Vale model under consideration,
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reverse power flow inducing voltage rise above 253V (i.e., 10% above nominal 230V) potentially arises. Recall from

Section 2.2 a strict tolerance of +10%/−6% from a nominal phase-to-neutral 230V must be maintained at the PCC

of each customer at all times. In the simulations that follow we aim to reduce reverse power flow inducing voltage

rise above 253V by selecting w = 0 when D-RHO energy-shifting, and w = 0, w1 = 0.1, w2 = 1, w3 = 25 when

A-RHO energy-shifting, where [23] provides further details on weight selection. To reduce voltage rise when A-RHO

energy-shifting the design of voltage threshold V that triggers latch output L = 1 also requires careful consideration.

In our simulations we consider a maximum voltage threshold below the 10% tolerance i.e., V = 1.08× 230V , and a

minimum threshold consistent with the −6% tolerance, i.e., V = 0.94×230V . Table 1 provides further details on the

design parameters considered in this paper when D-RHO or A-RHO energy-shifting.

Table 1: Design parameters considered in Section 4

D-RHO algorithm A-RHO algorithm

w = 0 w = 0, w1 = 0.1, w2 = 1, w3 = 25

V = 248.4V , V = 216.2V

To assess the distributor benefits of coordinating residential battery charge/discharge rates we define an important

special case; that is, battery charge/discharge powers of each aggregate member satisfies x(n)1 ( j) = 0 for all j ∈
{1,2, . . . ,240}. Then, in this special case, the aggregate grid profile X2 in (4) reduces to the aggregate demand profile

D on each day. In the examples that follows we benchmark D-RHO and A-RHO against this special case where

X2 = D on each day. In what follows we will refer this case as the special baseline case.

4.1. Power flows along the MV feeder

In this example we benchmark D-RHO energy-shifting against the special baseline case. To benchmark D-RHO

energy-shifting we consider power flows along the Elermore Vale feeder directly from the 11kV bus (cf. Fig. 2).

Further, we consider the number of tap operations arising from the line-drop compensation scheme incorporated into

the GridLAB-D model depicted in Fig. 2.

In Fig. 4(a) we present power flows (in MW) directly from the 11kV bus arising from the special baseline case. In

Fig. 4(b) we present power flows (in MW) directly from the 11kV bus arising when each aggregate member D-RHO

energy-shifts. In Fig. 4(a) we observe a peak load of 6MW on 8 January 2013, which coincided with the fifth highest

temperature on record at Observatory Hill in Sydney (located approximately 200km south of Elermore Vale) [35]. We

also observe a minimum load of 0.308MW on 7 January 2013, a direct result of significant reverse power flow along

the 11kV feeder. In Fig. 4(b) we observe a peak load of 4.07MW, which is 32% less then the peak load arising from

the special baseline case. Also, bi-directional power flows along the 11kV feeder on 7 Jan 2013 result in a minimum
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load of 0.846MW directly from the 11kV bus, an increase from the special baseline case. From Fig. 4 we infer peak

loads and reverse power flows along the 11kV feeder are successfully reduced when D-RHO energy-shifting.
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Distributed energy-shifting: 7-11 January 2013

11kV Elemore Vale feeder

Figure 4: Power flows from the 11kV bus to the Elermore Vale feeder for (a) the special baseline case (b) when D-RHO energy-shifting.

The GridLAB-D model incorporates a line-drop compensation scheme that lowers and raises taps on the 132kV/11kV

transformer to improve voltages delivered to downstream customers. Over the 5 day period considered in Fig. 4(a), 36

tap operations were recorded for the special baseline case. In contrast, when each aggregate member D-RHO energy-

shifts over the 5 day period considered in Fig. 4(b), only 26 tap change operations were recorded. This reduction in tap

operations when D-RHO energy-shifting potentially leads to lower maintenance costs for distribution operators. That

is, maintenance costs for tap changers on 132kV/11kV transformers are typically commensurate with the number of

tap operations.

4.2. Supply voltages in a LV network

In this example we consider three scenarios, and for each scenario voltage profiles at the PCC for a small subset of 37

aggregate members connected to pole transformer HP1431 are presented. Each aggregate member in this small subset

is denoted by n37 ∈ {1, . . . ,37}, and is carefully selected to illustrate voltages outside set tolerances in a LV network

are potentially remediated with a coordinated approach to charge and discharge residential battery storage. That is, the

voltage profiles of the remaining 43 customers connected to pole transformer HP1431 are not considered, as voltage

violations did not occur at the PCC of these customers during the simulations. Voltage rise that exceeds the upper

tolerances of +10%, and voltage dips that falls below the lower tolerances of −6%, are considered for remediation in

what follows.
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Distributed energy-shifting: 7-11 January 2013
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Adaptive energy-shifting: 7-11 January 2013
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Figure 5: Voltage profiles at the PCC for each of 37 aggregate members downstream of pole mounted distribution transformer HP1431 for (a) the

special baseline case, (b) when D-RHO energy-shifting, and (c) when A-RHO energy-shifting.

In the first scenario we consider the special baseline case for each aggregate member, with Fig. 5(a) depicting the re-

sulting voltage profiles for each aggregate member in n37. In the second scenario each aggregate member implements

D-RHO energy-shifting, with Fig. 5(b) depicting the resulting voltage profiles for each aggregate member in n37. In

the third scenario, a subset of 80 of the N = 845 customers, comprised of those aggregate members connected to pole

transformer HP1431, implement A-RHO while the remaining 765 aggregate members implement D-RHO energy-

shifting. Fig. 5(c) depicts the resulting voltage profiles for each aggregate member in n37. In Fig. 5(c) upper and lower

tolerances of +10%/− 6% from the nominal 230V together with a maximum voltage threshold V = 248.4V as in

Table 1 are also depicted.

In Fig. 5(a) we observe voltage profiles for each aggregate member in n37 exceed the upper and/or lower tolerances of

+10%/−6% from the nominal 230V in the context of the special baseline case. In Fig. 5(b) we observe the voltage

profiles for each of 23 aggregate members in n37 exceed the upper tolerance of +10% from the nominal 230 V. In

contrast, the voltage profiles of the remaining 14 aggregate members in n37 are within the upper and lower tolerances

of +10%/− 6% from the nominal 230V when D-RHO energy-shifting. Further, in Fig. 5(b) voltages are closer to

the nominal 230 V for all aggregate members in n37 on 7 January and 11 January, when compared to the baseline. In

Fig. 5(c) we observe the voltage profiles for each of 17 aggregate members in n37 slightly exceed the upper tolerance

of +10% from the nominal 230V. In contrast, the voltage profiles of the remaining 20 aggregate members in n37

are within the upper and lower tolerances of +10%/− 6% from the nominal 230V when A-RHO energy-shifting.

A reduction in the maximum voltage threshold (e.g., V = 1.03× 230V ) will indeed improve supply voltages to all

aggregate member when A-RHO energy-shifting.
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The results of this case study confirm that both RHO-based algorithms improved supply voltages in a low voltage

network. In particular, the D-RHO-based algorithm improved voltage dips and instances of voltage rise on some days,

and the A-RHO-based algorithm reduced both peaks and dips in supply voltage profiles on all days. Moreover, the

results highlight that when substantial and sustained voltage violations occur, customer-specific forecasts of load and

PV generation as opposed to aggregate demand forecasts allow for considerable improvements in voltage regulation,

as demonstrated with the A-RHO-based algorithm.

With the centralized QP-based algorithm presented in [23] considered as background, we infer that the D-RHO ap-

proach is preferable in that all customers received an equal distribution in annual savings commensurate with their

respective battery constraints. In contrast, the A-RHO approach is potentially preferred by an aggregate member when

voltages at a PCC would otherwise exceed or fall below strict tolerances resulting in the disconnection of a PV in-

verter [7]. Future work will quantify the financial benefits of the A-RHO approach under conditions where significant

voltage rise triggers the disconnection of a PV inverter.

5. Conclusions

In this paper we presented two receding horizon optimization-based approaches to coordinating residential battery

charge and discharge rates when customers are offered net metering PV incentives with time-based electricity prices.

In assessing the benefits of both approaches we found the A-RHO approach was preferable when voltages at a resi-

dential PCC exceeded or fell below set tolerances. By means of a case study using a publicly available GridLAB-D

model of an Australian distribution region, we achieved a peak load reduction of 32% when approximately 50% of

residential customers implemented the D-RHO algorithm. Future work will consider control algorithms for a residen-

tial PV inverter to adjust the real and reactive power supplied to, or absorbed by, a distribution grid. We envision such

controls will potentially offer further improvements in supply voltages for residential PV customers.
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Conclusions and future work

Overview

This thesis addressed key challenges for distribution operators looking to accommodate significant

rooftop PV generation. In the thesis we have studied two issues that potentially arise in distribution

networks with significant residential PV generation, namely, (i) reverse power flow that leads to

significant voltage rise; and (ii) peak loads that occur infrequently, but potentially lead to costly

network augmentation when PV generation is unavailable.

In the first part of the thesis, we have seen that grid-connected battery storage offers significant

opportunities to power system operators looking to reduce peak demand approaching capacity

constraints. We also reported a publicly available dataset of measured load and PV generation

from 300 residential customers located in an Australian distribution network. This dataset formed

the basis of all case studies presented in the thesis.

In the second part of the thesis, we considered the customer benefits of co-locating battery storage

with solar PV, in the context of feed-in tariffs and financial policies of net metering. Moreover,

our proposed QP-based framework allowed for a variety of financial incentives and their required

metering topologies. We formulated the QP-based algorithm for day-ahead scheduling of residential

battery storage, and showed a balance in reductions of load during during peak pricing periods

with penalties for reverse power flow during the same period.

For a net metering policy with time-based electricity prices, we also proposed a linear program

(LP)-based algorithm to schedule battery storage co-located with residential solar photovoltaics

(PV). By means of a case study, we have shown that the objective of maximizing the operational

savings that accrue to customers with battery storage potentially leads to undesirable consequences

for a utility. In contrast, the QP-based approach to scheduling battery storage in the day ahead

balanced the operational savings that accrue to a customer with the utility benefit of reducing

peak load and reverse power flow coincident with the peak pricing period.

In the third part of the thesis, coordinated approaches to scheduling residential battery storage were

presented. We proposed two day-ahead optimization-based algorithms for coordinating residential

battery storage co-located with solar photovoltaic (PV) when customers are offered net metering
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PV incentives with time-based electricity prices. In assessing the benefits of both approaches, we

found the central QP-based approach was preferable in that no customer was disproportionately

penalized for reducing peak load and/or reverse power flow in a distribution network.

We also presented two receding horizon optimization-based approaches to coordinating residential

battery charge and discharge rates, both of which incorporated updates in forecast information

at each time step. By means of a case study using a publicly available GridLAB-D model of an

Australian distribution region, we achieved a peak load reduction of 32% when approximately 50%

of residential customers implemented the D-RHO algorithm.

Summary of contributions by chapter

Part 1 Overview and context

• Chapter 1 investigated the economic viability of large-scale battery storage. We pro-

posed two case studies to investigate factors influencing the economic viability of en-

ergy storage for (1) power system operators and (2) large industrial-sized customers,

respectively. We found grid-connected battery storage offered significant opportunities

to power system operators in managing peak demand. We also found battery storage

offers opportunities to reduce the cost of connection for large industrial-sized customers.

• Chapter 2 reported a publicly available dataset that was considered throughout the

thesis. We identified several means by which anomalous records (e.g. due to inverter

failure) were identified and excised from the dataset.

Part 2 Battery scheduling: A single residential system

• Chapter 3 proposed an optimization-based algorithm for the scheduling of residen-

tial battery storage co-located with solar PV, in the context of PV incentives such as

feed-in tariffs. We presented a quadratic program (QP)-based algorithm that was ap-

plied to measured load and generation data from 145 residential customers located in

an Australian distribution network. The results of the case study confirmed the QP-

based scheduling algorithm significantly penalized reverse power flow and peak loads

corresponding to peak time-of-use billing.

• Chapter 4 presented a linear programming (LP)-based approach to designing day-

ahead battery charge and discharge schedules with the objective of maximizing the

operational savings that accrue to customers offered the financial policy of net metering.

To benchmark the LP-based approach, we considered the QP-based algorithm from

Chapter 3 in the context of net metering. We found an undesirable consequence to the
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utility is reverse power flow during the peak pricing period when residential customers

implement the LP-based scheduling algorithm. In contrast, we found that the QP-based

approach balanced the objective of the utility in limiting reverse power flow, with the

customer objective of increasing operational savings, in the context of net metering.

Part 3 Battery scheduling: Coordinated residential systems

• Chapter 5 addressed the problem of managing reverse power flow and peak loads

within a distribution network. We proposed two optimization-based algorithms for

coordinating residential battery storage when solar photovoltaic (PV) generation in

excess of load is compensated via net metering. Our approach extended the framework

presented in Chapter 4, whereby increases in operational savings were balanced with

penalties for reverse power flow during the peak pricing period. By means of a case

study, using measured load and generation data from 145 residential customers located

in an Australian distribution network, we found the customer payback period for a

10 kWh battery was in the vicinity of 6 years.

• Chapter 6 addressed the problem of managing bi-directional power flows in a dis-

tribution grid, with a focus on improving supply voltages in a low voltage network.

We proposed two receding horizon optimization-based algorithms for coordinating res-

idential battery storage. These two algorithms extended the framework presented in

Chapter 5, where the respective objective functions and design parameters were intro-

duced. In assessing the benefits of both approaches we found the A-RHO approach was

preferable when voltages at a residential PCC exceeded or fell below set tolerances.

Future Research

The results of the thesis have the potential to be extended in several directions. Opportunities for

extensions are presented below.

Battery Model

Recently, the capital costs associated with purchasing residential-scale batteries has dropped sig-

nificantly, and it is expected that this trend will continue into the next decade [14, 86]. In this

context, the Australian Energy Market Commission (AEMC) integration of storage study identi-

fied five key battery technologies for grid-side and/or customer-side applications [86]. Future work

could extend the simple battery model in this thesis in a direction to incorporate each of these five

battery technologies.
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More specifically, reference [86] presents details on the complexity of incorporating additional

battery constraints for five key battery technologies suitable for grid applications. For example,

the efficiency of the Zinc-Bromine flow battery is around 75%, compared to the round-trip efficiency

of a LiNiMnCoO2 of around 95%. Further, the Zinc-Bromine flow battery is designed to be fully

discharged each day. In contrast, advanced lead-acid batteries are designed for a the depth of

discharge of 40-50%, otherwise the lifetime of the battery is significantly reduced.

Pricing

In this thesis we have considered the potential operational savings that accrue to residential cus-

tomer with battery storage co-located with solar PV, in the context of existing financial incentives

such as feed-in tariffs and net metering with time-of-use electricity prices. Straightforward ex-

tensions to dynamic day-ahead pricing schedules [53–56], are certainly possible within the thesis

framework. Extensions that assess the market benefits of dispatchable renewable energy could also

be considered within the thesis framework.

Communication

In this thesis we have assumed two-way communication infrastructure between a distributor and

customer is available and lossless. Emphasis was given to approaches requiring only modest sens-

ing and communication infrastructure. Potential extensions to our framework might consider more

realistic scenarios where the availability of communication-based services are less reliable. In partic-

ular, further work to incorporate communication network delays or bandwidth constraints are pos-

sible. Moreover, the scalability, security, and distances involved with more realistic communication-

based services could also be explored [87].

Forecasting

Future work will replace emulated load and generation forecasts with actual forecasts. Extentions

to forecast solar PV production as in [88–91], are possible.

Real-time dynamic ratings

In Chapter 1 we introduced distribution equipment ratings that depend on a number of factors

including preceding load variations, ambient temperatures, and cooling systems. Future research

to dynamically model distribution equipment ratings for the purpose of identifying capacity con-
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straints requiring remediation in a distribution grid [92] would assist distributors in selecting the

design parameters introduced in Part 3 of the thesis.

Control

Control algorithms for a residential PV inverter to adjust the real and reactive power supplied to, or

absorbed by, a distribution grid, as considered in [58,64], could be incorporated in the GridLAB-D

model presented in Chapter 6 in future publications. We envision such controls will potentially

offer further improvements in supply voltages for residential PV customers with battery storage

systems.

The adaptive receding horizon optimization-based approach in Chapter 6 lends itself to formaliza-

tion in the form of a Model Predictive Control (MPC) problem. One advantage of such an approach

is the opportunity to formally establish conditions for stability. The time-based switching of the

latch would likely complicate this approach, however, so that the assumptions needed to guarantee

stability might be difficult to satisfy in practice. Likewise the ubiquity of model uncertainty would

further complicate the analysis [93]. We therefore leave the task of formally establishing robust

stability of an MPC formalization to future research.

Other distribution network topologies

This thesis considered Australian distribution networks and their associated topologies. Emphasis

was placed on radial network topologies where voltage regulation is likely to be problematic. Ex-

tensions to other distribution network topologies, where a smaller number of urban customers are

connected to distribution transformers [94], for example, are left to future research.
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