

Storage and transmission to support rapid growth of renewable energy

Andrew Blakers
Australian National University

http://re100.eng.anu.edu.au/

Global net new generation capacity in 2021

Renewables deployment speed per person

Solar generation per person per year

Australian renewable electricity fraction

Bigger than all utility batteries in the world put together

Facts on the ground: new Australian energy infrastructure

	Technology	Power (GW)	Energy	Comments
		/	(GWh)	
Tumut 3	Pumped hydro	0.6/1.8	<u>60</u>	Existing
Kangaroo Valley	Pumped hydro	0.2	<1	Existing
Wivenhoe	Pumped hydro	0.6	6	Existing
Snowy 2.0	Pumped hydro	2.0	350	Under construction
<u>Kidston</u>	Pumped hydro	0.3	2	Under construction
Battery of the Nation	Pumped hydro	0.6-2.5	6-25	Detailed planning
Baroota, Borumba, Lake Lyell, Oven	Pumped hydro	0.1-1 each	1-10	Feasibility studies and
Mtn, Yetholme, Cultana, Dungowan,			each	detailed planning
Fassifern, Highbury, Goat Hill,	No	a our domo		
Kanmantoo, Middleback Ranges	NO	new dams	on rive	18
<u>Utility</u> combined	Batteries	2.0	2	Existing
Household combined	Batteries	-	1	Existing
EV combined	Batteries	-	1	Existing
Marinus Link	Transmission	1.5	_	Detailed planning
Energy Connect	Transmission	0.8	_	Approved
HumeLink, QNI, VNI, VNI-West,	Transmission			Feasibility studies and
Central-West Orana REZ, Snowy 2.0				detailed planning
connection and others				

Indonesia has small wind potential

ASEAN's large solar resource

Solar panels on rooftops of houses and commercial buildings

- Australia (population 26 million) has 3 million solar rooftops
- 3-4 GW per year of new rooftop solar systems
- Cost of electricity: US\$30-40/MWh [one quarter of retail tariffs]

Agrivoltaics

- Billions of solar panels in agricultural regions
- A few percent shading of crops and pasture
 - → small loss of food production

Floating solar

- Onshore
- Offshore

Indonesia's vast floating solar resource

- Enough calm tropical sea to power the entire world
- 140,000 Gigawatts and 180,000 Terawatt-hours

Off-river pumped hydro energy storage

ANU's global off-river pumped hydro atlas

http://re100.eng.anu.edu.au/global/index.php

616,000 off-river sites (60°N to 56°S)

23 million Gigawatt-hours (1 million GW * 23 hours)

All outside national parks & urban areas

Pumped hydro storage in Indonesia

26,000 sites, 821 Terawatt-hours

100X more than needed to support 100% renewable electricity

http://re100.eng.anu.edu.au/global/index.php

Zooming in

3-D image + information pop-up

Key points

- Solar PV will dominate global and Indonesian energy
- Overnight storage is a solved problem
 - pumped hydro
 - batteries
- Indonesia
 - unlimited solar
 - unlimited pumped hydro storage
- Australia is the global solar pathfinder
 - Indonesia can rapidly follow Australia